Lecture Note 4 for “Computer Programming”

Instructor: Pangfeng Liu

Chapter 6 Top-down Design with Subprograms

6.1 User-defined Functions

· Users can define their own functions to perform useful work, just like those functions provided by the system.

· A function starts with a function header that has the name and the argument list, then the declaration of parameters and local variables, then a assignment statement that specifies the return value, then the return statement, then the end.

· The parameter, or dummy arguments are “place holder” for the internal operations, and the actual arguments provide the true value for function evaluation.

· Function interface document can clarify the usage of function. It provides useful information for those who want to understand and modify the function. The interface should also indicate whether the argument is an input, output, or input/output one.

· A function cannot call itself, unless it is a F90 style recursive function.

· Local variables declared within a function can be use only within the function.

6.2 Calling User-defined Functions
· The data type of function return value must also be specified so that the compiler can check for type inconsistency.

· The type of each actual argument must match its corresponding dummy argument.

· Side effect causes the value of an actual argument to change if its corresponding dummy argument is changed in the function.

6.3 Single-statement Functions
A single-line function simplifies the program by assigning the function name (hence the return value) in a single-line expression. Before the definition the return type and argument name and data types should be declared.

6.4 Defining a Subroutine

· A subroutine can modify some of its actual arguments, hence “returns” more than one value. This is done through side effect of pass-by-reference.

· The syntax is similar to FUNCTOIN, except that a subroutine has no return type since it has no return value.

· The argument could be an input, output, or input/output one.

6.5 Calling a Subroutine

Use the CALL statement to call a subroutine (compare this with functions which can be called within any expression).

6.6 Top-down Design and Structure Charts

The idea of structure programming is to divide a programming task into manageable and independent subtasks, and provide a solution to each of the subtasks. A subtask may be further divided into smaller ones should it be necessary. This “divide-and-conquer” approach matches functions and subroutines nicely.

6.7 Debugging and Testing

· Bottom-up testing evaluates the bottom-level subroutines first to ensure their correctness, and then verifies those parts of the program that use these building blocks. A driver program may be needed during the process.

· Top-down testing verifies the main program first, and put “stub” functions for those subroutines that have not been completed. A stub function simply prints its actual arguments so that we know it has been called correctly.

6.8 Common Programming Errors

· Make sure that the function name is assigned a value before the RETURN statement.

· The function name should appear only on the left-hand side of assignment.

· Do not refer local variables from outside of a function.

· Use CALL for subroutine, not for function.

· Spell all the function and subroutine name right.

