Lecture Note 2 for “Computer Programming”

Instructor: Pangfeng Liu

Chapter 2 Problem Solving and Fortran

Programming is a ‘problem solving’ process.

2.1 Problem Solving and Programming

There are five steps in solving a problem with software engineering methodology.

step 1. Specify the problem requirement.

Make sure that you understand what the problem is.

step 2. Analyzing the problem.

Make a precise definition of the input, the output, and the relation between them. This and the previous step are the most important ones since you do not want to solve the wrong problem, or solve the right problem, but get the wrong answers.

step 3. Design the problem-solving algorithm.

An algorithm is a step-by-step precise and well-defined sequence of instruction for any anyone to carry out. It must be precise so that there is no ambiguity in its meaning, and it should be well-defined so that we know exactly what the effect will be while carrying out an instruction.

Structured programming is to divide a task into a set of more manageable subtasks, and solve them one at a time. The most general form would be: get the data, compute the results, and then print the answers.

step 4. Implementing the algorithm

You may use your favorite programming language to implement the algorithm, but sometimes you need a special language to do the job.

step 5. Testing and verifying the program

Testing and debugging usually is the most time-consuming part of programming. Experience is essential.

2.2 Applying the Software Engineering Method

See the textbook for details.

2.3 Overview of Fortran

We will introduce the following Fortran statements.

· Program statement

A program statement identifies a program by giving it a name.

A program should be given a meaningful name to describe what it does. It is also a good idea to associate a program name with the source file name.

Not required but strongly recommended.

· Comments

Although compiler ignores comments, they provide essential information on how this program is written, the meanings of each variable, and important implementation details that only the author can provide.

· Type declaration

The type declaration statements associate a variable with a data type, which determines what kind of values can be stored in a variable, (or memory cell), and how the value should be stored.

We will introduce three kinds of data types at this moment, REAL, INTEGER, and CHARACTER, to represent floating point number, integer values, and sequence of characters.

There are two kinds of data declaration.

· Variable

To declare storage for entities that will change their values (variables).

· Parameter

A parameter statement declares a constant, which the program cannot alter.

The parameter statement must follow its type declaration.

A valid variable name must begin with a capital letter, and followed by a sequence of capital letters for digits. The length of an identifier can be at most 6 (in F77).

It is always a good idea to pick meaningful names and the six-letter limit is quite restricted. However, using long variable names may have portability problem.

Do not use keywords as variable identifiers.

Fortran does not require you to declare all the variables before usage. If you use variables without declaring them, Fortran will guess its data type; anything starts with letter I to N will be integer, otherwise it is REAL.

I strongly suggest that you declare all the variables before usage, to avoid potential data type confusion and conflicts caused by typos.

· Assignment

Assign a new value into a variable. The old value is replaced by the new value. The left-hand side is the target and the right-hand side is the source. The source could be a single variable, a constant, or a complex expression.

An expression is made of operands and operators. A binary operator combine two operands into a single value, like +, -, *, /, and ** (for exponentiation), and a unary operator has only one operand.

The assignment operator is “=”, which is very different from the usual meaning of “equal”.

· Input/Output statement

· Read

Read values into a list of variables. The keyed in values are stored into the variable according to the order they appeared in the list.

· Print

Write the values of a list of variables or expressions.

One prompt output is usually needed to remind the user about what should be typed next.

· Stop statement

Stops the program. There could be more than one stop due to flow control statements.

· End statement

Marks the end of a program.

There are three ways one can store a value into a variable.

1. Initialize it with PARAMETER statement

2. Assign a value into it.

3. Read a new value into it.

2.4 Style and Formal Fortran Programs

Fortran 77 has many restrictions on how program is formatted, i.e., it is not a free-format language like C. The main reason is that it was originated designed for writing programs on cards.

· If there is a letter ‘C’ or ‘*’ at column 1, then this line is a comment.

· If there is any character at column 6 then this line is a continuation of the previous line.

· Columns 1 through 5 are used as numeric labels.

· Program text should start from column 7 to 72.

· Columns 73 through 80 are ignored by the compiler, but can be used to sort the cards by a card sorter.

All the blanks are ignored, except those in the character string. Blank characters are usually added around operator to improve readability.

Blank lines are ignored by the compiler, but can improve program readability.

Comment lines are important document to facilitate program maintenance, which usually accounts for 75% of development costs.

2.5 INTEGER, REAL, and CHARACTER Data Type

These are the three most commonly used data types in Fortran.

The difference between INTEGER and REAL is in their internal representation.

· INTEGER

An INTEGER uses binary representation to store an integer in binary form, i.e., a sequence of power sequence with base 2.

Overflow and underflow occur when the absolute value exceed the range the can be represented by limited number of bits.

· REAL

On the other hand, the REAL numbers are stored as two parts, mantissa and exponent. The mantissa describes the number of significant digits and the exponent represents the power.

Fortran uses so-called scientific notation, a system with base 10. However, the IEEE standard internal representation is based on. For example, in IEEE standard 754, a single precision floating point number has 1 sign bit, 8 exponent bits and 23 mantissa bits. See the following for more details. http://research.microsoft.com/~hollasch/cgindex/coding/ieeefloat.html
The limited mantissa bits cannot represent all the numbers without error. In addition mathematic operations can cause overflow or underflow– number too large or too small to fit into exponent.

A cancellation error occurs when a very small value disappears when added to a very large value.

· CHARACTER

We can allocate the number of bytes to store a character string.

The assignment of CHARACTER can pad the destination with blanks, or truncate the source when the length of the source and target does not fit.

2.6 Arithmetic Expressions

Operator precedence describes the relative order in performing operators in an expression.

· Parenthesis ()

· **

· * and /

· + and –

Operator associativity describes how operators are associated with the operands with the same precedence.

· Left associative

· A + B + C is (A + B) + C

· Right associative

· X ** Y ** Z is X ** (Y ** Z)

General rules

· Multiplication ‘*’ must be explicit.

· Use parenthesis to make things clear.

· Parenthesize expression with unary operator after an binary operator.

· Do not mix REAL with INTEGER.

Only when both operands of a binary operator are INTEGER should the answer be of type INTEGER. Mixed-type arithmetic expression results in REAL data type.

Mixed-type assignment causes implicit type conversion.

Integer division does not have fractional part. This is very different from dividing a REAL with a REAL.

2.7 Using Functions in Fortran

A function is a set of code that performs a specific operation. A function takes on several input arguments, and produces an output, or return value

This section will deal with pre-defined functions, i.e., those functions that are implemented by the system and are ready for you to use.

A function promotes reusability. The best strategy to complete a task is to use reuse the one that has been verified and proven correct, like those system functions.

The system functions have the same “I through N” naming convention as implicit type declaration.

2.8 Common Programming Errors

The process of debugging, or removing bugs (or mistakes) from a program can be tedious and time-consuming. Experience and practice will certainly help.

There are four kinds of mistakes a programmer could make.

· Syntax errors

· When the compiler detects that part of your program does not fit into the grammatical specification of Fortran, a syntax error occurs.

· Avoid typos and misplaced punctuation symbols.

· Get familiar with the syntax constructs of Fortran.

· Learn to read error messages.

· Match all the delimiters

· Runtime error

· Run-time errors happen during program execution due to illegal instructions.

· Line-positioning errors

· Things are not put into the right column, and are misinterpreted by the compiler.

· Misplaced continuation marks.

· Program text after column 72.

· Errors in arithmetic expression

· Expression evaluation order is not intended.

· Data type conversion problems, both at input and assignment

· Call a function with correct type of data.

