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Abstract

In 1948, Claude Shannon posed and solved one of the fundamental
problems of information theory. The question was whether it is possible
to communicate reliably over noisy channels, and, if so, at what rate.
He defined a theoretical limit, now known as the Shannon limit, up
to which communication is possible, and beyond which communication
is not possible. Since 1948, coding theorists have attempted to design
error-correcting codes capable of getting close to the Shannon limit.

In the last decade remarkable progress has been made using codes
that are defined in terms of sparse random graphs, and which are de-
coded by a simple probability-based message-passing algorithm.

This paper reviews low–density parity–check codes (Gallager codes),
repeat-accumulate codes, and turbo codes, emphasising recent advances.
Some previously unpublished results are then presented, describing (a)
experiments on Gallager codes with small blocklengths; (b) a stopping
rule for decoding of repeat-accumulate codes, which saves computer
time and allows block decoding errors to be detected and flagged; and
(c) the empirical power-laws obeyed by decoding times of sparse graph
codes.

1 Introduction

The central problem of communication theory is to construct an encoding and
a decoding system that make it possible to communicate reliably over a noisy
channel. The encoding system uses the source data to select a codeword
from a set of codewords. The decoding algorithm ideally infers, given the
output of the channel, which codeword in the code is the most likely to have
been transmitted; for an appropriate definition of distance, this is the ‘closest’
codeword to the received signal. A good code is one in which the codewords
are well spaced apart, so that codewords are unlikely to be confused.

Designing a good and practical error correcting code is difficult because
(a) it is hard to find an explicit set of well-spaced codewords; and (b) for a
generic code, decoding, i.e., finding the closest codeword to a received signal,
is intractable.

However, a simple method for designing codes, first pioneered by Gallager
(1962), has recently been rediscovered and generalized. The codes are defined
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in terms of sparse random graphs. Because the graphs are constructed ran-
domly, the codes are likely to have well-spaced codewords. And because the
codes’ constraints are defined by a sparse graph, the decoding problem can
be solved – almost optimally – by message-passing on the graph. The practi-
cal performance of Gallager’s codes and their modern cousins is vastly better
than the performance of the codes with which textbooks have been filled in
the intervening years.

2 Sparse Graph Codes

In a sparse graph code, the nodes in the graph represent the transmitted
bits and the constraints they satisfy. For a linear code with a codeword length
N and rate R = K/N , the number of constraints is of order M = N − K.
[There could be more constraints, if they happen to be redundant.] Any linear
code can be described by a graph, but what makes a sparse graph code special
is that each constraint involves only a small number of variables in the graph:
the number of edges in the graph scales roughly linearly with N , rather than
as N2.

The graph defining a low–density parity–check code, or Gallager code
(Gallager 1962; Gallager 1963; MacKay 1999), contains two types of node:
codeword bits, and parity constraints. In a regular (j, k) Gallager code (fig-
ure 1a), each codeword bit is connected to j parity constraints and each
constraint is connected to k bits. The connections in the graph are made at
random.

Repeat-accumulate codes (Divsalar et al. 1998) can be represented by a
graph with four types of node (figure 1b): equality constraints = , intermedi-
ate binary variables (black circles), parity constraints + , and the transmitted
bits (white circles). The encoder sets each group of intermediate bits to values
read from the source. These bits are put through a fixed random permutation.
The transmitted stream is the accumulated sum (modulo 2) of the permuted
intermediate bits.

In a turbo code (Berrou and Glavieux 1996), the K source bits drive two
linear feedback shift registers, which emit parity bits (figure 1c).

All these codes can be decoded by a local message-passing algorithm on the
graph, the sum-product algorithm (MacKay and Neal 1996; McEliece et al.
1998), and, while this algorithm is not the optimal decoder, the empirical
results are record-breaking. Figure 2 shows the performance of various sparse
graph codes on a Gaussian channel. In figure 2(a) turbo codes with rate 1/4
are compared with regular and irregular Gallager codes over GF(2), GF(8)
and GF(16). In figure 2(b) the performance of repeat-accumulate codes of
various blocklengths and rate 1/3 is shown.

The best sparse graph codes

Which of the three types of sparse graph code is ‘best’ depends on the chosen
rate and blocklength, the permitted encoding and decoding complexity, and
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Figure 1. Graphs of three sparse graph codes.
(a) A rate 1/4 low–density parity–check code (Gallager code) with

blocklength N = 16, and M = 12 constraints. Each white circle rep-
resents a transmitted bit. Each bit participates in j = 3 constraints,
represented by + squares. Each + constraint forces the sum of the
k = 4 bits to which it is connected to be even.

(b) A repeat-accumulate code with rate 1/3. Each white circle rep-
resents a transmitted bit. Each black circle represents an intermediate
binary variable. Each = constraint forces the variables to which it is
connected to be equal.

(c) A turbo code with rate 1/3. (c1) The circles represent the code-
word bits. The two rectangles represent rate 1/2 convolutional codes
(c2), with the systematic bits {t(a)} occupying the left half of the rect-
angle and the parity bits {t(b)} occupying the right half.
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Figure 2. (a) Bit error probabilities for communication over a Gaussian channel at
rate 1/4: left–right : Irregular LDPC, GF (8), transmitted blocklength
24000 bits; JPL turbo, N = 65536 bits (dotted line); Regular LDPC,
GF (16), N = 24448 bits; Irregular LDPC, GF (2), N = 64000 bits;
Regular LDPC, GF (2), N = 40000 bits. [From Davey and MacKay
(1998).]

(b) Block error probability of repeat-accumulate codes with rate
1/3 and various blocklengths, versus Eb/N0. The dotted lines show the
frequency of undetected errors.
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Figure 3. (a) A regular binary Gallager code with column weight j = 4, rate R =
0.936 and blocklength N = 4376 (K = 4094), compared with BCH codes
and interleaved Reed-Solomon codes with similar rates, on a Gaussian
channel. Hard-input bounded-distance decoding is assumed for the BCH
and RS codes. Vertical axis: block error probability. Horizontal axis:
Eb/N0 [Curves that are further to the left are best.] (b) A Gallager
code over GF(16), rate 8/9, blocklength N = 3996 bits, applied to a 16-
ary symmetric channel, and compared with interleaved RS codes with
similar rates. Vertical axis: block error probability. Horizontal axis:
channel symbol error probability. [Curves that are further to the right
are best.] From MacKay and Davey (1998).

the question of whether occasional undetected errors are acceptable (turbo
codes and repeat-accumulate codes both typically make occasional undetected
errors, even at high signal-to-noise ratios, because they have a small number
of low weight codewords; Gallager codes do not typically show such an error
floor).

Gallager codes are the most versatile; it’s easy to make a competitive Gal-
lager code with almost any rate and blocklength, as is illustrated in figure 3.
Figure 3(a) shows the performance of a high-rate regular binary Gallager code;
it outperforms BCH codes and Reed-Solomon codes on this channel. And fig-
ure 3(b) shows the performance of a high rate Gallager code over GF(16) on
a 16-ary symmetric channel: even though this channel is the sort of channel
for which Reed-Solomon codes are intended, the Gallager code still manages
to perform a little better than the RS code.

The best binary Gallager codes found so far are irregular codes whose
parity check matrices have nonuniform weight per column (Luby et al. 1998;
Urbanke et al. 1999). The carefully constructed codes of Urbanke, Richard-
son and Shokrollahi outperform turbo codes at blocklengths longer than 104

bits, with especially impressive results at 106 bits, where a rate 1/2 irregular
Gallager code has a bit error probability of 10−6 at just 0.13 dB from capac-
ity, beating comparable turbo codes by more than 0.3 dB. Turbo codes can
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difference-set cyclic codes

N 7 21 73 273 1057 4161
M 4 10 28 82 244 730

K 3 11 45 191 813 3431
d 4 6 10 18 34 66
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Figure 4. Difference-set cyclic codes – low–density parity–check codes satisfying
many redundant constraints – outperform equivalent Gallager codes.
The table shows the N , M , K, distance d, and row weight k of some
difference-set cyclic codes, highlighting the codes that have large d/N ,
small k, and large N/M . All DSC codes satisfy N constraints of weight
k. In the comparison the Gallager code had (j, k) = (4, 13), and rate
identical to the DSC code. Vertical axis: block error probability; hor-
izontal axis: Eb/N0/dB. Data on DSC code performance provided by
R. Lucas and M. Fossorier.

also be beaten by irregular Gallager codes defined over finite fields GF (q)
(Davey and MacKay 1998). However, these successes for Gallager codes have
only been obtained by careful work, and it is notable how easily simple turbo
codes and repeat-accumulate codes achieve almost as good results. The good
performance of simple turbo codes and repeat-accumulate codes compared
with simple Gallager codes can presumably be attributed to the use of state
variables. It seems plausible therefore that the best codes will make use of
state variables. Probably what is holding up the development of even better
turbo codes is the need for a theory, comparable to the theory of irregular
Gallager code design (Urbanke et al. 1999), for the construction of irregular
graphs with state variables.

Codes with redundant constraints – ‘the Tanner challenge’

The performance of Gallager codes can be enhanced by making a non-random
code with redundant sparse constraints (Tanner 1981; Lucas et al. 1999).
There is a difference-set cyclic code, for example, that has N = 273, and
K = 191, but the code satisfies not M = 82 but N , i.e., 273, low-weight
constraints (figure 4). It is impossible to make random Gallager codes that
have anywhere near this much redundancy among their checks. The redun-
dant checks allow the sum-product algorithm to work substantially better, as
shown in figure 4, in which a DSC code outperforms a comparable regular
binary Gallager code by about 0.7 dB. The (73,45) DSC code has been im-
plemented on a chip by Karplus and Krit (1991) following a design of Tanner
(1981). Product codes are another family of codes with redundant constraints.
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Figure 5. Performance of Gallager codes with very small block lengths.
(a) Rate 1/2, column weight j = 3. Dotted lines show undetected errors
occuring for blocklengths N = 96 and N = 204.
(b) Rate 1/3, column weight j = 4. Dotted lines show undetected errors
occuring for blocklengths N = 48 and N = 96 only. Vertical axis: block
error probability; horizontal axis: Eb/N0/dB.

For example, the product with itself of a (n, k) = (64, 57) Hamming code sat-
isfying m = 7 constraints is a (N, K) = (n2, k2) = (4096, 3249) code. The
number of independent constraints is M = 847, but the sum-product decoder
can make use of 2nm = 896 equivalent constraints. Such codes have recently
been named ‘turbo product codes’, but I think they should be called ‘Tanner
product codes’, since they were first investigated by Tanner (1981). Prod-
uct codes have the disadvantage, however, that their distance does not scale
well with blocklength; the distance of a product code with blocklength n2,
built from two codes with distance d, is only d2, so the ratio of distance to
blocklength falls.

An open problem is to discover codes sharing the remarkable properties
of the difference-set cyclic codes but with larger blocklengths and arbitrary
rates. I call this task the Tanner challenge, in honour of Michael Tanner,
who recognised the importance of such codes twenty years ago.

3 Do Gallager codes ever make undetected errors?

I use the term ‘undetected error’ to denote a decoding which returns a valid
codeword not actually equal to the transmitted codeword. In our empirical
experience with Gallager codes of many shapes and sizes, Gallager codes do
not make undetected errors; their only failure mode is a ‘detected error’, that
is, a decoding that fails to converge to a valid codeword, so that the recipient
is aware that the block has been mis-received (MacKay and Neal 1996). Of
course, we are decoding Gallager codes at noise levels well above half the
minimum distance of the code, so, logically, undetected errors must have non-
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zero probability; nevertheless, they appear to be so rare as to be effectively
nonexistent. Since this property is an important advantage of Gallager codes,
we have explored empirically how far regular binary Gallager codes can be
pushed before undetected errors show up. Figure 5 shows that undetected
errors occur when we reduce the blocklength N to sufficiently small values –
below 200 bits in the case of rate 1/3 codes with j = 4, and below 400 bits
in the case of rate 1/2 codes with j = 3. The frequency of undetected errors
appears to fall very rapidly with increasing blocklength and with increasing
column weight j.

4 Stopping rules for the decoding of sparse graph codes

When we decode Gallager codes, we test the bit-by-bit best guess at each
iteration to see if it is a valid codeword. If it is, then our decoder halts.
Otherwise, the decoder continues, declaring a failure (a detected error) if some
maximum number of iterations (e.g., 200 or 1000) occurs without successful
decoding.

In the turbo code and repeat-accumulate code community, a different de-
coding procedure is widely used. The decoding algorithm is run for a fixed
number of iterations (irrespective of whether the decoder has actually settled
in a consistent state at some earlier time), and performance curves are dis-
played as a function of the number of iterations. This practice is wasteful of
computer time, and it blurs the distinction between undetected and detected
errors. Undetected errors are of scientific interest because they reveal distance
properties of a code. And in engineering practice, it would seem preferable
for the detected errors to be labelled as erasures if practically possible – un-
detected errors are a great nuisance in many communication contexts.

I therefore demonstrate here that it is possible to detect convergence of
the sum-product decoder of a repeat-accumulate code, just as in the case of
turbo codes (Frey 1998). This assertion may be found confusing if the role
of the decoder is viewed as ‘finding the most probable state of the source
bits’. Surely any hypothesis about the K source bits is a valid hypothesis,
so how can we detect that the decoder has finished decoding? The answer is
that decoding should be viewed as finding the most probable state of all the
variables in the graph, not just the source bits. Early on in the decoding, there
will be inconsistencies among the most probable states of internal variables
in the graph. Only when a sensible decoding has been found will there be a
state of harmony in the network. [Note that detecting convergence doesn’t
imply that we get rid of undetected errors; undetected errors will still occur
if the decoder converges to an incorrect codeword.]

I used the following method to decide when to stop the decoding of a
repeat-accumulate code.
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the stop-when-it’s-done rule for decoding

repeat-accumulate codes.

1. While running the sum-product algorithm up and down the
accumulator trellis, note the most probable state at each
time. This state sequence – if you unaccumulate it – defines
a sequence of guesses for the source bits, with each source bit
being guessed q times, where q is the number of repetitions
in the RA code.

2. When reading out the likelihoods from the trellis, and com-
bining the q likelihoods for each of the source bits, compute
the most probable state of each source bit. This is the state
that maximizes the product of the likelihoods.

3. If all the guesses in (1) agree with the most probable state
of the source bit found in (2) then the decoder has reached a
valid state, so halt. Otherwise continue.

The cost of these extra operations is small compared to the cost of decod-
ing. Using this procedure, we can distinguish between undetected errors and
detected errors in a repeat-accumulate code, as shown in the results of figure
2(b).

We can also evaluate how many iterations it takes to decode these codes,
and quantify the potential savings from applying the above stopping rule. If,
for example, the old-fashioned method runs all decodings for 20 iterations,
the histogram in figure 6(b) shows that there would, for a particular code
at 0.75 dB, be a block error probability of about 0.8 – roughly 80% of the
decodings took more than 20 iterations. Since a small but substantial number
took more than 40 iterations, you could run the old-fashioned decoder for
twice as long, and the block error probability would fall by a factor of ten or
so. However, using the stop-when-it’s-done decoder, you can use roughly the
same amount of computer time and get the error probability down by a factor
of about one hundred.

Nothing is lost, because (if you log the stopping time in a file) you can
always recover the old-fashioned graphs if anyone still wants them.

5 Empirical distribution of decoding times

We have investigated the number of iterations τ of the sum-product algorithm
required to decode Gallager codes and repeat-accumulate codes. Given one
code and a set of channel conditions the decoding time varies randomly from
trial to trial. We find that the histogram of decoding times follows a power
law, P (τ) ∝ τ−p, for large τ . The power p depends on the signal to noise
ratio and becomes smaller (so that the distribution is more heavy-tailed) as
the signal to noise ratio decreases.
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Figure 6. Histograms of number of iterations to find a valid decoding for a repeat-
accumulate code with source block length K = 10000 and transmitted
block length N = 30000. (a) Block error probability versus signal to
noise ratio for the RA code. (ii.b) x/σ = 0.89, Eb/N0 = 0.749 dB. (ii.c)
x/σ = 0.90, Eb/N0 = 0.846 dB. (iii.b, iii.c): Fits of power laws to (ii.b)
(1/τ 6) and (ii.c) (1/τ 9).
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(a) (b)

Figure 7. (a) Histogram of number of iterations for an irregular binary Gallager
code, rate 1/2, blocklength N = 9972, at Eb/N0 = 1.4 dB. (b) Log/log
plot of iterations histogram showing that the tail of the distribution is
well approximated by a power law. The straight line has slope −8.5.
From MacKay et al. (1999).

We have observed power laws in repeat-accumulate codes and in irregular
and regular Gallager codes. Figures 6(ii) and (iii) show the distribution of
decoding times of a repeat-accumulate code at two different signal-to-noise
ratios. The power laws extend over several orders of magnitude. Figure 7
shows the distribution of decoding times for an irregular Gallager code. The
tail is well approximated by the power law P (τ) ∼ τ−8.5.

It would be interesting to understand the reason for these power laws.
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