
1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Transformations

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Objectives

• Learn how to carry out transformations in
OpenGL

- Rotation
- Translation
- Scaling

• Introduce OpenGL matrix modes
- Model-view
- Projection

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Matrices

• In OpenGL matrices are part of the state
•Multiple types

- Model-View (GL_MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE) (ignore for now)
- Color(GL_COLOR) (ignore for now)

•Single set of functions for manipulation
•Select which to manipulated by
-glMatrixMode(GL_MODELVIEW);
-glMatrixMode(GL_PROJECTION);

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Current Transformation
Matrix (CTM)

• Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current transformation
matrix (CTM) that is part of the state and is
applied to all vertices that pass down the
pipeline

• The CTM is defined in the user program and
loaded into a transformation unit

CTMvertices vertices
p p’=Cp

C

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

CTM operations

• The CTM can be altered either by loading a new
CTM or by postmutiplication

Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rotation about a Fixed Point

Start with identity matrix: C ← I
Move fixed point to origin: C ← CT
Rotate: C ← CR
Move fixed point back: C ← CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.
Let’s try again.

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C ← I
C ← CT -1
C ← CR
C ← CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first
executed in the program

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

CTM in OpenGL

•OpenGL has a model-view and a
projection matrix in the pipeline which are
concatenated together to form the CTM

•Can manipulate each by first setting the
correct matrix mode

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rotation, Translation, Scaling

glRotatef(theta, vx, vy, vz)

glTranslatef(dx, dy, dz)

glScalef(sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Example

• Rotation about z axis by 30 degrees with a fixed
point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the
program is the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Arbitrary Matrices

•Can load and multiply by matrices defined
in the application program

•The matrix m is a one dimension array of
16 elements which are the components of
the desired 4 x 4 matrix stored by columns

• In glMultMatrixf, m multiplies the existing
matrix on the right

glLoadMatrixf(m)
glMultMatrixf(m)

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Matrix Stacks

• In many situations we want to save
transformation matrices for use later

- Traversing hierarchical data structures (Chapter 10)
- Avoiding state changes when executing display lists

•OpenGL maintains stacks for each type of
matrix

- Access present type (as set by glMatrixMode) by

glPushMatrix()
glPopMatrix()

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Reading Back Matrices

• Can also access matrices (and other parts of the
state) by query functions

• For matrices, we use as

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

double m[16];
glGetFloatv(GL_MODELVIEW, m);

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Transformations

• Example: use idle function to rotate a cube and
mouse function to change direction of rotation

• Start with a program that draws a cube
(colorcube.c) in a standard way

- Centered at origin
- Sides aligned with axes
- Will discuss modeling in next lecture

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

main.c

void main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB |
 GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutCreateWindow("colorcube");
 glutReshapeFunc(myReshape);
 glutDisplayFunc(display);
 glutIdleFunc(spinCube);
 glutMouseFunc(mouse);
 glEnable(GL_DEPTH_TEST);
 glutMainLoop();
}

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Idle and Mouse callbacks

void spinCube()
{
theta[axis] += 2.0;
if(theta[axis] > 360.0) theta[axis] -= 360.0;
glutPostRedisplay();

}

void mouse(int btn, int state, int x, int y)
{
 if(btn==GLUT_LEFT_BUTTON && state == GLUT_DOWN)
 axis = 0;
 if(btn==GLUT_MIDDLE_BUTTON && state == GLUT_DOWN)
 axis = 1;
 if(btn==GLUT_RIGHT_BUTTON && state == GLUT_DOWN)
 axis = 2;
}

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Display callback

void display()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();
 glRotatef(theta[0], 1.0, 0.0, 0.0);
 glRotatef(theta[1], 0.0, 1.0, 0.0);
 glRotatef(theta[2], 0.0, 0.0, 1.0);
 colorcube();
 glutSwapBuffers();
}

Note that because of fixed from of callbacks, variables
such as theta and axis must be defined as globals

Camera information is in standard reshape callback

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using the Model-view Matrix

• In OpenGL the model-view matrix is used to
- Position the camera

• Can be done by rotations and translations but is
often easier to use gluLookAt

- Build models of objects
• The projection matrix is used to define the
view volume and to select a camera lens

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Model-view and Projection
Matrices

• Although both are manipulated by the same
functions, we have to be careful because
incremental changes are always made by
postmultiplication

- For example, rotating model-view and projection
matrices by the same matrix are not equivalent
operations. Postmultiplication of the model-view
matrix is equivalent to premultiplication of the
projection matrix

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Smooth Rotation

• From a practical standpoint, we are often want
to use transformations to move and reorient an
object smoothly

- Problem: find a sequence of model-view
matrices M0,M1,…..,Mn so that when they are
applied successively to one or more objects we
see a smooth transition

• For orientating an object, we can use the fact
that every rotation corresponds to part of a
great circle on a sphere

- Find the axis of rotation and angle
- Virtual trackball (see text)

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Incremental Rotation

• Consider the two approaches
- For a sequence of rotation matrices

R0,R1,…..,Rn , find the Euler angles for each
and use Ri= Riz Riy Rix

• Not very efficient
- Use the final positions to determine the axis

and angle of rotation, then increment only the
angle

• Quaternions can be more efficient than either

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Quaternions

• Extension of imaginary numbers from two to
three dimensions

• Requires one real and three imaginary
components i, j, k

• Quaternions can express rotations on sphere
smoothly and efficiently. Process:

- Model-view matrix → quaternion
- Carry out operations with quaternions
- Quaternion → Model-view matrix

q=q0+q1i+q2j+q3k

23Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Interfaces

• One of the major problems in interactive
computer graphics is how to use two-
dimensional devices such as a mouse to
interface with three dimensional obejcts

• Example: how to form an instance matrix?
• Some alternatives

- Virtual trackball
- 3D input devices such as the spaceball
- Use areas of the screen

• Distance from center controls angle, position,
scale depending on mouse button depressed

