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Abstract

Financial options whose payoff depends critically on historical prices are called path-

dependent options. Their prices are usually harder to calculate than options whose prices

do not depend on past histories. Asian options are popular path-dependent derivatives,

and it has been a long-standing problem to price them efficiently and accurately. No

known exact pricing formulas are available to price them under the continuous-time

Black–Scholes model. Although approximate pricing formulas exist, they lack accuracy

guarantees. Asian options can be priced numerically on the lattice. A lattice divides the

time to maturity into n equal-length time steps. The option price computed by the lattice

converges to the option value under the Black–Scholes model as n!1. Unfortunately,

only subexponential-time algorithms are available if Asian options are to be priced on the
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lattice without approximations. Efficient approximation algorithms are available for the

lattice. The fastest lattice algorithm published in the literature runs in O(n3.5)-time,

whereas for the related PDE method, the fastest one runs in O(n3) time. This paper pre-

sents a new lattice algorithm that runs in O(n2.5) time, the best in the literature for such

methods. Our algorithm exploits the method of Lagrange multipliers to minimize the

approximation error. Numerical results verify its accuracy and the excellent performance.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Derivative securities are financial instruments whose values depend on some

underlying assets. Such securities are essential to speculation and the manage-

ment of financial risk. Options are financial derivatives that give their buyers

the right but not the obligation to buy or sell the underlying assets for a con-

tractual price called the exercise price. Take the typical stock option for exam-
ple. Assume that an investor purchases a call option, which gives him the right

to buy 100 shares of XYZ stock at $10 per share 60 days from now. If the stock

price ends above $10 then, say $25, then the buyer can realize a profit of

100 · (25 � 10) = 1500 dollars by exercising the option. If the stock price ends

below $10, the buyer simply gives up the option. The payoff of this call option

is therefore 100 · max(S � 10,0), where S is the stock price 60 days from now.

Note that S is a random variable. This option is commonly called a vanilla op-

tion for its simplicity.
In practice, many varieties of complex options have been structured to meet

specific financial goals. Take path-dependent options as an example. A path-

dependent option is an option whose payoff depends nontrivially on the price

history of the underlying asset, which we will assume to be stock for conve-

nience. The payoff function may depend on the maximum stock price, the min-

imum stock price, or the average stock price, to mention just a few possibilities.

It may also depend on whether the stock price ever hits a given target price,

whether the stock price ever stays within two given target prices for a given
length of time, and so on. The possibilities are clearly without limits.

How to assign a fair price to an option given a continuous-time stochastic

process for the stock price has been investigated since as early as 1900 [1]. In

1973, Black and Scholes [2] settle the question for vanilla option pricing in a

way that is considered intellectually satisfactory. Although an option must

have a unique theoretical price, calculating that price may be computationally

difficult if the payoff is complicated. For example, Chalasani et al. show that

the general path-dependent option-pricing problem is #P-hard [3].
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This paper focuses on a particular type of path-dependent option, the Asian

option, that is known to be difficult to price. Asian options seem to be sug-

gested first by Ingersoll [4]. They were originally traded on Asian markets, par-

ticularly in Tokyo [5]. The payoff of an Asian option depends on the average

price of the underlying asset. It is useful for hedging transactions whose cost

is related to the average price of the underlying asset (such as crude oil). Its
price is furthermore less subject to price manipulation. Hence the averaging

feature is popular in many thinly-traded markets and embedded in other deriv-

atives like convertible bonds.

There are no simple exact closed-form formulas for the price of Asian op-

tion under the standard continuous-time Black–Scholes model. Call this price

the true option value for simplicity. Many approximate closed-form solutions

have been proposed under various assumptions [6–8]. Geman and Yor derive

an analytical expression for the Laplace transform of the Asian call option
[9]. Numerical inversion of this transform is also considered in [10,11]. Some

inversion algorithms based on the Euler and Post-Widder methods can be

found in [12]. Rogers and Shi provide lower and upper bounds [13]. These for-

mulas are surveyed in [14–16,5]. They show rather conclusively that most

approximate closed-form formulas lack the accuracy guarantees and some even

produce large pricing errors under certain circumstances.

Since no exact closed-form formulas exist for the Asian option, the develop-

ment of efficient numerical algorithms becomes critical. To begin with, there
are the popular Monte Carlo and quasi-Monte Carlo methods [17–21]. The

main problem is their relative inefficiency.

The option value can be approximated by numerical methods such as the

lattice and the related discretized PDE methods. These methods divide the time

horizon of the option into n discrete time steps and discretize the stock prices at

each time step. Take a 2-time-step CRR lattice model in Fig. 1 as an example.

(The CRR lattice will be described in more detail later.) The time interval is

evenly divided into 2 time steps. The stock price at time step 0 is S0 (at node
N(0,0)). The stock price can either move up to S0u (at node N(1,0)) or down

to S0d (at node N(1,1)) at the first time step. Similarly, each stock price can

either move up or move down in subsequent time steps. Discretization error

is introduced by the CRR lattice model because both the time and the possible

stock prices are discretized. Since the discretization error goes to zero at rate

O(n�1) [22], the option values computed by the CRR model converge to the

true option value. The remaining key issue is whether such convergence can

be achieved efficiently.
To see intuitively why pricing the Asian option on the lattice can be so time-

consuming, assume that the random walk for the stock price is binomial as in

Fig. 1. After n time steps, the history contains 2n possible price paths, each with

its own average stock price. As the payoff of the Asian option depends on the

average stock price, there are 2n possible payoffs at time step n. To price an



Fig. 1. A 2-time-step CRR lattice. (a) The stock price is placed above each node. (b) The node

name is above each node. The probability of reaching each node from the root is labelled under the

nodes in both plots.
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Asian option on a lattice without introducing errors other than the discretiza-

tion error, the most efficient algorithm currently known is by Dai and Lyuu

[23,24]. But their algorithm runs in time subexponential in n.

In pricing the Asian option, each node on the lattice should keep a state for

each possible average stock price. Then the option value corresponding to each
state is calculated. The trouble with this straightforward approach is the expo-

nential nature of the number of states. To strike a better balance between effi-

ciency and accuracy, approximation algorithms usually allow errors besides the

discretization error. The approximation algorithm proposed by Hull and

White [25] employs much fewer states for each node (called the allocated

states). Only the option value corresponding to an allocated state is evaluated.

The option value corresponding to a missing state, in contrast, is interpolated

from those of the two nearest allocated states. Interpolation errors are thus
introduced. This influential paradigm has been followed by most approxima-

tion lattice algorithms [26–28].

The major problem with the Hull–White paradigm is convergence: Forsyth

et al. show that the calculated option values may not converge to the true op-

tion value if the lattice algorithms are improperly implemented [22]. Efficient

and convergent approximation algorithms on the lattice are available. For

example, Aingworth et al. produce an O(n4)-time algorithm with convergence

rate O(n�1) [29]; Dai et al. improve their running time from O(n4) to O(n3.5)
[30]; Forsyth et al. present an O(n3.5)-time approximation lattice algorithm

and an O(n3)-time discretized PDE method that both converge at rate

O(n�1) [22].

The major contribution of our paper is a new approximation lattice algo-

rithm with a running time of O(n2.5), the best in the literature. The convergence
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rate is O(n�1). The true option value can be tightly estimated by extrapolation.

Two key ideas are exploited in the algorithm. First, the option values of many

states can be evaluated exactly by a simple formula without resorting to inter-

polation [29]. This dramatically reduces the interpolation errors accumulated

during backward induction. The algorithm therefore focuses the computa-

tional efforts on the states that cannot be evaluated directly. The second idea
is to allocate the number of states in such a way that the interpolation error

can be minimized. This idea is pioneered by Dai et al. [30]. Intuitively, the

states should be distributed based on the importance of each node. Technically,

the distribution of states is calculated by applying the method of Lagrange

multipliers to minimize the interpolation error. The application of Lagrange

multipliers in option pricing is novel and makes the analysis rigorous.

The paper is organized as follows. The stock price dynamics is described in

Section 2. How to price Asian options on the lattice and the efficiency problems
are also dealt with in the same section. Section 3 presents our efficient approx-

imation algorithm and proves the performance and convergence rate claims.

Numerical results are given in Section 4 to support these claims. Section 5 con-

cludes this paper.
2. Model, lattice, and pricing

Assume the Asian option initiates at 0 (in year) and matures at T (in years).

Define S(t) as the stock price at year t. S(t) follows the log-normal diffusion

process:

Sðt þ dtÞ ¼ SðtÞ exp½ðr � 0:5r2Þdt þ rdW t	; ð1Þ
where Wt is the standard Wiener process, r is the risk-free interest rate per an-

num, and r denotes the volatility of the stock price.
The payoff of an Asian option depends on the average stock price at matu-

rity defined as AT 

R T

0
SðsÞds
T . Let X be the exercise price. The payoff of an Asian

call option at maturity date is max(AT � X, 0). The value of an Asian call op-

tion is therefore e�rTE[max(AT � X, 0)] under the so-called risk-neutral proba-

bility measure. This paper focuses on Asian call options; the extension to Asian
put options is straightforward.

Define the value of an Asian call option at year t as V(S,A, t), where S and A

denote the stock price at year t and the average stock price from year 0 to year

t, respectively. V(S,A, t) satisfies the following partial differential equation [26]:

oV
ot

þ rS
oV
oS

þ r2S2

2

o2V

oS2
þ S � A

t
oV
oA

� rV ¼ 0: ð2Þ

The above equation can be numerically solved by either the finite difference

method or the lattice method. Both are discrete-time algorithms, which parti-
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tion the time between year 0 and year T into n equal-length time steps. The

length of a time step Dt is therefore T/n. Let Si denote the stock price at time
step i, which corresponds to S(iDt) in the continuous-time model. The average
stock price from time step 0 to time step i in a discrete-time model is defined as

AðiÞ 
 S0þS1þ���þSi
iþ1 . The payoff of an Asian call option at maturity in the discrete-

time model is

maxðAðnÞ � X ; 0Þ: ð3Þ

Thus the option value under the discrete-time model is

e�rT E maxðAðnÞ � X ; 0Þ½ 	: ð4Þ
Our task is to compute above so that the values converge to the true option

values as n increases.

The approximation error for a lattice method can be divided into two types:

discretization error and interpolation error. The former refers to the error

introduced by discretizing the continuous-time model V in Eq. (2) by the dis-

crete model Eq. (4). The latter indicates the error introduced by additional

approximation methods used by pricing algorithms. These approximation
methods are needed as it is computationally intractable to evaluate Eq. (4)

without them. The discretization error is known to converge to zero at the rate

O(n�1) [22]. If an efficient approximation method is found to introduce the

interpolation error that also converges to zero at rate O(n�1), the whole algo-

rithm will converge to the true option value at the same rate.

2.1. Pricing on the CRR lattice

The CRR lattice model is due to Cox et al. [31]. In the CRR lattice model,

Si+1 equals Siu with probability p and Sid with probability 1 � p, where d < u.

The stock price at time step i that results from j down moves and i � j up moves

therefore equals S0u
i�jdj. A 2-time-step CRR lattice is depicted in Fig. 1(a).

We now describe the geometry of the CRR lattice in more detail. Let node

N(i, j) stand for the node at time step i reachable from the root with j cumula-

tive down moves. Its associated stock price is S0u
i�jdj. The stock price can

move from N(i, j) to N(i + 1, j) with probability p and to N(i + 1, j + 1) with
probability 1 � p. Node N(i, j) can therefore be reached with probability
i
j

� �
pi�jð1� pÞj. See Fig. 1(b) for illustration. For pricing purposes, the proba-

bility p for an up move is set to (erDt � d)/(u � d), where r is the risk-free inter-

est rate, u ¼ er
ffiffiffiffi
Dt

p
, and d = 1/u.

Pricing on the lattice is done by backward induction. The option value at the

maturity date can be evaluated directly by Eq. (3). Let (i, j,A) denote the state

with an average stock price A (from time step 0 to time step i) at node N(i, j)

and v(i, j,A) the corresponding option value. If this stock price moves up to
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node N(i + 1, j) at time step i + 1, the average stock price becomes

A0 
 ðiþ1ÞAþSuiþ1�jdj

iþ2 . If the stock price moves down to node N(i + 1, j + 1), the

average stock price becomes A00 
 ðiþ1ÞAþSui�jdjþ1

iþ2 . The desired option value

v(i, j,A) then equals

vði; j;AÞ ¼ e�rDt p � vðiþ 1; j;A0Þ þ ð1� pÞ � vðiþ 1; jþ 1;A00Þ½ 	: ð5Þ

The above formula can be applied inductively from time step n � 1 to time step

0 with v(0,0,S0) at the root node giving the desired price under the lattice

model.

2.2. Interpolation

Although the option value computed by the lattice model converges to the

true option value at rate O(n�1), how the pricing problem can be solved effi-
ciently poses a challenge. There are i!

ði�jÞ!j! price paths that reach node N(i, j),

and each such path gives rise to a distinct average price (state). The number

of states therefore rises dramatically, making the computation via a direct

application of Eq. (5) very time consuming. To address this problem, we follow

the Hull–White paradigm in lowering the number of states at each node. When

state (i, j,A) is missing, its corresponding option value will be estimated by lin-

ear interpolation from its two nearest allocated states (i, j,A�) and (i, j,A+) via:

vði; j;AÞ ¼ A� A�

Aþ � A� vði; j;AþÞ þ Aþ � A
Aþ � A� vði; j;A�Þ; ð6Þ

where A� < A < A+. The term ‘‘interpolation error’’ shall refer to the error
arising from estimating v(i, j,A) by linear interpolation.
3. The new O(n2.5)-time pricing algorithm

Two key techniques are exploited by the algorithm. First, v(i, j,A) can be

evaluated directly when A exceeds a certain easily calculated bound. This result

helps reduce the state count. Second, a state allocation scheme is developed by
applying Lagrange multipliers to minimize the interpolation error. The final

state count turns out to be O(n2.5), which is also the running time.

3.1. Pruning unnecessary states

Observe that the corresponding price sum for state (‘,m,A) is (‘ + 1)A, as A
is the average stock price from time step 0 to time step ‘. The following theo-
rem states that v(‘,m,A) can be described by a simple formula when
(‘ + 1)AP (n + 1)X.
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Theorem 3.1. Suppose the price sum associated with state (‘,m,A) is

(n + 1)X + � for some � P 0. Then the option value v(‘,m,A) equals

• [� + (n � ‘)S0u
‘�mdm]/(n + 1) when r = 0, and

• e�rT ½�þ S0u‘�mdmerDt 1�e
ðn�‘ÞrDt

1�erDt 	=ðnþ 1Þ when r > 0.
Proof. If r > 0, the expected value of the future price sum

S‘+1 + S‘+2 + � � � + Sn equals

S0u‘�mdm erDt þ e2rDt þ � � � þ eðn�‘ÞrDt� �
¼ S0u‘�mdmerDt

1� eðn�‘ÞrDt

1� erDt
:

The option value v(‘,m,A) therefore equals

e�rT E max AavgðnÞ � X ; 0
� �

j
X‘

i¼0
Si ¼ ðnþ 1ÞX þ �; S‘ ¼ S0u‘�mdm

" #

¼ e�rT E max
ðnþ 1ÞX þ �þ

Pn
i¼‘þ1Si

nþ 1
� X ; 0

 �� �

¼ e�rT �þ S0u‘�mdmerDt
1� eðn�‘ÞrDt

1� erDt

� �
=ðnþ 1Þ:

The case for r = 0 is similar. h

As the value v(‘,m,A) can be calculated without introducing interpolation
errors if AP (n + 1)X, a pricing algorithm only needs to evaluate v(‘,m,A)
for A < (n + 1)X. This improves efficiency, by pruning unnecessary states,
and accuracy, for not resorting to interpolation.

3.2. The state allocation scheme

Let ki, j stand for the number of states allocated at node N(i, j). Define k as

the average number of states for each node. The total number of states is equal

to
P

06j6i6nki;j � kðn2=2Þ as there are approximately n2/2 nodes. The running
time is therefore O(n2k). Theorem 3.1 says that v(i, j,A) can be easily evaluated
if (i + 1)A > (n + 1)X. Thus at node N(i, j), all ki, j states have average stock

prices not more than (n + 1)X/(i + 1). These ki,j states (the average stock prices)

shall divide the range [0, (n + 1)X/(i + 1)] evenly. The difference of the average

stock prices of two adjacent states at node N(i, j) is ðnþ1ÞX
ðiþ1Þki;j 6

nX 0

iki;j
, where X 0 
 2X.

The state allocation scheme introduces interpolation error because only ki,j
states are allocated for N(i, j) instead of the full i!

j!ði�jÞ! states and because inter-

polation formula (6) is employed. The interpolation error can be analyzed as

follows. When we calculate v(i, j,A) with formula (5), the option values for
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the nonexistent states (i + 1, j,A 0) and (i + 1, j + 1,A00) are estimated by interpo-

lation via Eq. (6). Thus v(i + 1, j,A 0) is interpolated from the values of the two

bracketing states ðiþ 1; j;A0
�Þ and ðiþ 1; j;A0

þÞ, where A0
� < A0 < A0

þ. The

interpolation error can be estimated by the Taylor series expansion

ðA0
þ � A0ÞðA0 � A0

�Þ
2

o2V ðgÞ
oA2

;

where o2V ðgÞ
oA2

denotes the second partial derivative of the true option value V

with respect to the average price A and g 2 ½A0
�;A

0
þ	. We follow [22] in postu-

lating that o2V ðgÞ
oA2

��� ��� is bounded by a constantM. The interpolation error for esti-
mating v(i + 1, j,A 0) is then bounded above by M(nX 0/iki + 1,j)

2. Similarly, the

interpolation error for v(i + 1, j + 1,A00) is at most M(nX 0/iki+1,j+1)
2. Thus the

accumulated interpolation error �a(i, j,A) for state (i, j,A) is bounded above by

pMðnX 0=ikiþ1;jÞ2 þ ð1� pÞMðnX 0=ikiþ1;jþ1Þ2 þ p�aðiþ 1; j;A0Þ
þ ð1� pÞ�aðiþ 1; jþ 1;A00Þ:

Inductively, the accumulated interpolation error at (0,0,S0) is bounded by

�int 

X

16j6i6n

i
j

� �
pi�jð1� pÞjMðnX 0=iki;jÞ2 ¼ X 02M

Xn

i¼1

Xi

j¼0

Bði; j; pÞn2

i2k2ij
;

where Bði; j; pÞ 
 i
j

� �
pi�jð1� pÞj. To minimize �int subject to the conditionP

16j6i6nki;j ¼ n2k=2, ki,j can be easily shown by the method of Lagrange mul-

tipliers to be

ki;j ¼
n2k
2

�
Bði; j; pÞ=i2
� �1=3

P
06m6l6n Bðl;m; pÞ=l2

� �1=3 :
The minimized �int then equals

X 02M
X

16j6i6n

Bði; j; pÞn2

i2n4k2

4
� n2Bði;j;pÞ=i2½ 	2=3P

06m6l6n
n2Bðl;m;pÞ=l2½ 	1=3

n o2

¼ 4X 02M

n4k2
X

16j6i6n

n2Bði; j; pÞ=i2
� �1=3( )3

¼ 4X 02M

n4k2
n2=3

X
16i6n

i�2=3
X
16j6i

Bði; j; pÞ1=3
" #( )3

:
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A result of Bender [32, p. 489] implies thatX
16j6i

Bði; j; pÞ1=3 6
X
16j6i

Bði; j; 0:5Þ1=3 � ð1=2Þ1=331=2p1=3i1=3 ¼ bi1=3;

where b = (1/2)1/331/2p1/3. Since

n2=3
X
16i6n

i�2=3 � bi1=3 � n2=3
Z n

0

bi�1=3 di ¼ ð3=2Þbn4=3:

�int is bounded above by

4X 02Mb3ð3=2Þ3n4

n4k2
¼ 4X 02Mb3ð3=2Þ3

k2
¼ Oðk�2Þ:

Forsyth et al. argue that the lattice discretization error introduced by discret-

izing both the time and the stock prices converges at rate O(n�1) [22]. To ensure

that the convergence rate of our algorithm is O(n�1), we obtain �int = O(n
�1) by

setting k to be proportional to n0.5. As n2k = O(n2.5), our proposed algorithm

runs in time O(n2.5).
4. Numerical Results

When the exercise price of the Asian option is zero, a closed-form solution

exists for the Asian option [26]. The simple numerical test in Fig. 2 highlights
Fig. 2. Estimating the true option value by extrapolation. The stock price is 100, the exercise price

is 0, the risk-free rate is 10%, the time to maturity is 0.25 year, and the volatility of the underlying

stock is 0.1. The x-axis denotes 1/n. The y-axis denotes the option value. Four pricing results

(n = 50,100,200,400) are marked with squares with the calculated option values listed next to the

squares. The straight line is computed by linear regression.
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that our algorithm converges at rate O(n�1). Observe that our prices lie essen-

tially on a straight line. The limiting price when n tends to infinity can be esti-

mated by extrapolation. The extrapolation value of 98.760352 matches the true

option value of 98.76035189.

The convergence behaviors of the modified Hull–White method, the PDE

method, and our method are compared in Table 1. The time complexities of
the first two approaches are O(n3.5) and O(n3), respectively [22]. The number

of average states k is set to 250
ffiffiffi
n

p
so that our algorithm uses fewer states in

each case than the other two methods. It therefore takes less time as well.

All three methods converge to the true option values. But our method achieves

the same convergence rate with much less time than the other two methods.

The following numerical tests demonstrate that the extrapolated values ob-

tained by our method are accurate. Zhang provides a very accurate semi-analyt-

ical model for pricing the Asian option [14]. Zhang uses this method as the
benchmark and comparesmany different pricingmethods [5].His numerical data

are repeated in Table 2 with the extrapolated option values computed by our lat-

tice algorithm added. Both the root-mean-squared errors and the maximum

absolute errors of our extrapolated results are much lower than other methods.

Interestingly, our method generates much lower pricing errors than other meth-

odswhen the volatility is large. This is because higher volatility increased the like-

lihood that the closed-form formula of Theorem 3.1 can be used in pricing.
Table 1

Forsyth�s modified Hull–White, PDE, and our methods

MHW O(n3.5) PDE O(n3) Ours O(n2.5)

Time steps Value Time (s) Value Time (s) Value Time (s)

Case 1 r = 0.1, r = 0.1, T = 0.25, X = 100, S = 100
50 1.8486 18 1.8478 4.8 1.8487 1

100 1.8501 204 1.8492 55.0 1.8502 7

200 1.8508 2293 1.8503 313.0 1.8509 45

400 1.8512 25918 1.8509 2540.0 1.8512 270

Extrapolation 1.8516 1.8514 1.8516

True value: 1.8515 ± 0.0001

Case 2 r = 0.1, r = 0.5, T = 5, X = 100, S = 100
50 28.3899 15 28.3573 6 28.3882 1

100 28.3972 168 28.3842 36 28.3964 7

200 28.4011 1893 28.3952 280 28.4007 45

400 28.4031 21370 28.4003 2278 28.4030 271

Extrapolation 28.4051 28.4054 28.4050

True value: 28.40525 ± 0.00015

MHW is the modified Hull–White method; PDE is the discretized PDE method; Ours is our

algorithm; Extrapolation is the extrapolated option values. The results of the modified Hull–White

method, the PDE method, and the range of true option values, are based on [22].



Table 2

Comparison with analytical approximations

r X Exact Extrapolation AA3 J-TE PM-J3 PM-J4 CT-GC

0.05 95 8.8088392 8.808871 8.80884 8.80884 8.80884 8.80884 8.80884

100 4.3082350 4.308312 4.30823 4.30824 4.30822 4.30823 4.30823

105 0.9583841 0.958609 0.95838 0.95837 0.95841 0.95838 0.95833

0.1 95 8.9118509 8.911908 8.91184 8.91190 8.91175 8.91186 8.91183

100 4.9151167 4.915249 4.91512 4.91513 4.91514 4.91512 4.91508

105 2.0700634 2.070162 2.07006 2.06996 2.07025 2.07006 2.06993

0.2 95 9.9956567 9.995679 9.99569 9.99594 9.99550 9.99552 9.99536

100 6.7773481 6.777354 6.77738 6.77692 6.77819 6.77720 6.77700

105 4.2964626 4.296472 4.29649 4.29561 4.29791 4.29641 4.29593

0.3 95 11.6558858 11.655841 11.61518 11.65565 11.65663 11.65500 11.65475

100 8.8287588 8.828706 8.82900 8.82686 8.83183 8.82792 8.82755

105 6.5177905 6.517738 6.51802 6.51494 6.52237 6.51726 6.51635

0.4 95 13.5107083 13.510619 13.51182 13.50887 13.51308 13.50764 13.50789

100 10.9237708 10.923669 10.92474 10.91903 10.93043 10.92085 10.92090

105 8.7299362 8.729839 8.73089 8.72337 8.73968 8.72764 8.72680

0.5 95 15.4427163 15.442573 15.44587 15.43806 15.44623 15.43448 15.43707

100 13.0281555 13.028020 13.03107 13.01889 13.03880 13.02013 13.02253

105 10.9296247 10.929477 10.92353 10.91731 10.94583 10.92260 10.92375

RMSE 0.000101 0.00129 0.00434 0.00561 0.00339 0.00268

MAE 0.000225 0.00315 0.01231 0.01621 0.00824 0.00587

Exact is the option value obtained in [14]; Extrapolation is the extrapolated value computed by our

method; AA3 is the fourth-order approximation method given in [5]; J-TE is the Taylor expansion

method given in [16]; PM-J3 is the shifted lognormal fitting method in [33]; PM-J4 is the shifted

arcsinh-normal fitting method in [7]; GT-GC is the continuous limits of the geometric conditioning

method given in [34]; RMSE is the root-mean-squared errors. MAE is the maximum absolute error.
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5. Conclusion

This paper proposes a new approximation algorithm for pricing Asian op-

tions on a lattice. Our algorithm runs in O(n2.5)-time with the convergence rate

O(n�1), which is superior to existing lattice and the related PDE algorithms

with the same convergence rate. Our claims are proved rigorously, and numer-

ical results are provided to support the performance and convergence claims.
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