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Abstract

We consider the problem of reducing Oblivious Transfer to Private Information Re-
trieval. We give a simple reduction from 1-out-of-2 Oblivious Transfer to Private
Information Retrieval, where the reduction is against malicious players.

We also consider the completeness of Private Information Retrieval on weakened
assumption. We will give a impossibility result and a possibility result. For impossi-
bility result, we use the technique originating in [24]. For possibility result, we reduce
Weak Oblivious Transfer which was proposed in [16] to Weak Private Information
Retrieval.
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Chapter 1

Introduction

Oblivious Transfer (OT) that was introduced by Halpern and Rabin [23] is a classic
cryptographic primitive in two-party scenario. In it, Alice has a bit b and Bob tries
to get it. Bob will get b with probability 1/2, and he knows whether he got b or not.
Alice has no idea about whether Bob got b or not.

There are several variants of OT, the most general one is 1-out-of-2 Oblivious
Transfer (

(
1
2

)
-OT) which was proposed by Even, Goldreich, and Lempel in [19]. In

the protocol, Alice has two bits b0 and b1 as input, and Bob has a bit c as input.
Ideally, Alice should learn nothing new from the Bob, whereas the receiver should
learn bc and nothing more. The relationship between OT and

(
1
2

)
-OT had been showed

to be equivalent by Crepeau in [12]. Goldreich, Micali, Wigderson [21], and Killian
[24] showed

(
1
2

)
-OT is complete for all two-party secure computations.

More generalized Oblivious Transfer was proposed. In 1-out-of-n Oblivious Trans-
fer (

(
1
n

)
-OT), Alice has n bits b0, . . . , bn−1 as input, and Bob has an index c ∈

{0, . . . , n − 1} as input. Bob wants to get bc without leaking c to Alice and learns
nothing more. In k-out-of-n Oblivious Transfer (

(
k
n

)
-OT), Alice has n bits b0, . . . ,

bn−1 as input, and Bob has k indices c1, c2, . . . , ck ∈ {0, . . . , n − 1} as input. Bob
wants to get bc1 , . . . , bck

without leaking his input to Alice and learns nothing more.
Another important cryptographic primitive is Private Information Retrieval(PIR)

which was proposed by Chor, Goldreich, Kushilevitz, and Sudan in [11]. The PIR
scheme is an interactive protocol between a database D and a user U . The user
wants to privately retrieve some information from the database with as low as possible
communication complexity from D. More formally, the database is modeled as an n-
bit string x, the user retrieves the i-th bit x[i], and gives the database no information
about i. We call a PIR protocol non-trivial if its total communication from D is
strictly less than the size of database.

Given the completeness of
(
1
2

)
-OT, other primitives can be shown complete from(

1
2

)
-OT. Crescenzo, Malkin, and Ostrovsky [15] showed that any non-trivial PIR is

complete for all two-party secure computations. They first constructed a
(
1
2

)
-OT

protocol which is secure against honest-but-curious Bob. Then they constructed a
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Introduction 2

(
1
2

)
-OT protocol for malicious Bob by using techniques originating in [22, 21], based

on commitment schemes and zero-knowledge proofs for NP-complete languages to
force Bob following the protocol.

An interesting question in cryptography is that how to implement oblivious trans-
fer based on seemingly weaker primitives. Brassard and Crepeau [6] proposed two
weaker models of oblivious transfer and showed their completeness: XOR Oblivious
Transfer and Generalized Oblivious Transfer. In XOR Oblivious Transfer, Bob can
choose to learn b0, b1, or b0 ⊕ b1. In Generalized Oblivious Transfer, Bob can choose
to learn b0, b1, or all the binary functions of b0 and b1.

Cachin [7] also proposed a weaker oblivious transfer called Universal Oblivious
Transfer, denoted UOT(X, Y ). In Universal Oblivious Transfer, Alice sends a random
variable X with alphabet X and Bob obtains a random variable Y . Bob can secretly
specify the distributions PY |X=x for all x ∈ X such that Y does not give Bob complete
information about X. UOT(X, Y ) is complete for two-party computations when
H(X|Y ) > 0.

The weakness of above weaker primitives is one-sided: only Bob learns extra
information. Damg̊ard, Kilian, and Salvail [16] proposed a general model in two-
party computation called Weak Generic Transfer(WGT). In this model, a cheating
player can get more information than an honest one. A special case in WGT is
Weak Oblivious Transfer ((p,q)-WOT), which is a

(
1
2

)
-OT protocol with the following

relaxation: with probability at most p, a cheating Alice will learn Bob’s choice c, and
with probability at most q, a cheating Bob will learn both of Alice’s input bits.

Weak Oblivious Transfer was shown to be complete when p + q < 1 by reducing(
1
2

)
-OT to it. The reduction consists of two subprotocol. One is to reduce Alice’s

probability for learning Bob’s choice, but it raises Bob’s probability for learning Alice’s
input. The other one is to reduce Bob’s probability for learning Alice’s input, but it
raises Alice’s probability for learning Bob’s choice. After execute this reduction once,
we will get a (p

′
, q

′
)-WOT. If p + q < 1, then p

′
+ q

′
< p + q. So if we execute this

reduction many times, we will get a (s, t)-WOT where s + t is negligible.

Our Results

Although reductions from
(
1
2

)
-OT to PIR had been shown in [15], the

(
1
2

)
-OT

protocol against malicious Bob is complicated, and the communication complexity is
large because of using bit commitment and zero-knowledge proofs for NP-complete
languages. In chapter 3, based on the reduction that works anginst honest Bob
in [15], we construct a reduction that reduce

(
1
2

)
-OT to PIR that works against

malicious Bob. Since we don’t uses bit commitment and zero-knowledge proofs for
NP-complete languages to force Bob following the protocol, the reduction is simpler
than the reduction that works against malicious Bob in [15].
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We also consider a generalized model of PIR called Weak Private Information
Retrieval (WPIR). In chapter 4, we will show the completeness of WPIR. We will
give a bound for possibility result, and a bound for impossibility result. However, the
bounds are not tight.



Chapter 2

Preliminaries

Let N be the set of natural numbers. If x is a string, let x[i] denote the i-th bit of
x. An interactive Turing machine is a probabilistic Turing machine with a communi-
cation tape. An interactive protocol is a pair (A,B) of interactive Turing machines
running in probabilistic polynomial time. A transcript of an execution of an inter-
active protocol is the messages that appear on the communication tapes of the two
machines during that execution. Let tA,B(x, rA, y, rB) denote the transcript of an
execution of an interactive protocol (A, B) with input x for A and y for B and with
random strings rA for A and rB for B. If t = tA,B(x, rA, y, rB) is such a transcript,
the output of A is denoted by A(x, rA, t). Similarly the output of B is denoted by
B(y, rB, t). The notation (rB, t) ← tA,B(x, rA, y, ·) denotes the random process of
selecting a random string rB uniformly at random, and setting t = tA,B(x, rA, y, rB).
Similarly we denote (rA, t) ← tA,B(x, ·, y, rB) for the case where A’s random string is
chosen uniformly at random, and (rA, rB, t) ← tA,B(x, ·, y, ·) for the case where the
random strings for both A and B are chosen uniformly at random.

Private Information Retrieval(PIR)

Informally, a private information retrieval scheme is an interactive protocol be-
tween two parties, a database D and a user U . The database holds an n-bit string x,
and user holds an index i ∈ {1, · · · , n}. The user wants to get x[i] without leaking his
index to database. A trivial way is that database sends x to user. So we only consider
the non-trivial private information retrieval in which the bits sent from database to
user is less the n.

Definition 1. (Private Information Retrieval) Let (D, U) be an interactive pro-
tocol where D’s input x is an n-bit string, and U ’s input i is an index of n. Then
(D, U) is called a private information retrieval protocol if it has the following three
properties:

4



Preliminaries 5

1. Correctness: If both parties follow this protocol, then U outputs x[i] at the end
of the protocol.

2. Security: For each n ∈ N, each i, j ∈ {1, . . . , n}, each x ∈ {0, 1}n, for each
polynomial time interactive Turing D

′
, for all constants c, and all sufficiently

large k, |pi − pj| ≤ k−c, where

pi = Pr{(rD′ , rU , t) ← tD′ ,U((1k, x), ·, (1k, n, i), ·) : D
′
(1k, x, rD′ , t) = 1}

pj = Pr{(rD
′ , rU , t) ← tD′ ,U((1k, x), ·, (1k, n, j), ·) : D

′
(1k, x, rD

′ , t) = 1}

3. Communication complexity: The bits that sent form D to U is at most n− 1.

Property 1 is sometimes relaxed to allowing a negligible probability of error. In
this paper, the user always gets the correct output.

Property 2 says that for any two distinct indices i and j, database can distinguish
between the messages that user uses i as input and the messages that user uses j as
input with a negligible probability. Thus database can’t learn user’s input.

1-out-of-2 Oblivious Transfer(
(

1
2

)
-OT)

Informally, a 1-out-of-2 Oblivious Transfer scheme is an interactive protocol be-
tween two parties, Alice A and Bob B. Alice holds two bits b0 and b1, and Bob holds
a bit c. Bob wants to get bc from Alice without leaking c to Alice. Alice also wants
to protect bc̄ from leaking it to Bob.

Definition 2. (1-out-of-2 Oblivious Transfer) Let (A,B) be an interactive pro-
tocol where A’s input is a pair of bits (b0, b1), and B’s input is a bit c. We say that
(A,B) is a 1-out-of-2 Oblivious Transfer protocol if it holds that:

1. Correctness: If both parties follow this protocol, then B outputs bc at the end of
the protocol.

2. Privacy against Alice: For all probabilistic polynomial time Alice A
′
, all b0, b1

∈ {0, 1}, all constant d, and all sufficiently large k,

Pr{c ← 0, 1; (rA
′ , rB, t) ← tA′ ,B((1k, b0, b1), ·, (1k, c), ·) :

A
′
(1k, b0, b1, rA′ , t) = c} ≤ 1/2 + k−d

3. Privacy against Bob: For all probabilistic polynomial time Bob B
′
all b0, b1 ∈

{0, 1}, all c
′ ∈ {0, 1}, and all random strings rB

′ , there exists c ∈ {0, 1} such
that for all constant d, and all sufficiently large k,

Pr{(b0, b1) ← 0, 12; (rA, t) ← tA,B
′ ((1k, b0, b1), ·, (1k, c

′
), r

′
B) :

B
′
(1k, c

′
, rB′ ) = bc̄} ≤ 1/2 + k−d
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As in PIR, the property 1 is sometimes relaxed to allowing a negligible probability
of error. In this paper, Bob always gets the correct output.

1-out-of-2 Weak Oblivious Transfer((p, q)-
(

1
2

)
-WOT)

A 1-out-of-2 Weak Oblivious Transfer scheme is a generalized 1-out-of-2 Oblivious
Transfer scheme in which the security properties are relaxed. A 1-out-of-2 Weak
Oblivious Transfer scheme is a interactive protocol between two parties, Alice A and
Bob B. Alice holds two bits b0 and b1, and Bob holds a bit c. Bob wants to get bc

from Alice. But Bob can know c with some, and Alice also can know bc̄ with some
probability.

Definition 3. ((p, q)-
(
1
2

)
-WOT) Let (A, B) be an interactive protocol where A’s

input is a pair of bits (b0, b1), and B’s input is a bit c. We say that (A, B) is a
(p, q)-

(
1
2

)
-WOT protocol if it holds that:

1. Correctness: If both parties follow this protocol, then B outputs bc at the end of
the protocol.

2. Privacy against Alice: For all probabilistic polynomial time Alice A
′
, her prob-

ability for exactly knowing Bob’s input c is at most p.

3. Privacy against Bob: For all probabilistic polynomial time Bob B
′
, his probabil-

ity for exactly knowing Alice’s input (b0, b1) is at most q.

Note the relaxation is that one player can know the other player’s input with some
probability, otherwise he should learns nothing from the other player. For example,
Alice can know c with probability p, it means that Alice’s probability for guessing c
correctly is p + (1 − p)/2 = 1/2 + p/2, so the bias for Alice to guess c correctly is
p/2. Similarly, the bias for Bob to guess bc̄ correctly is q/2.

An immediate question is that can
(
1
2

)
-OT be reduced to (p, q)-

(
1
2

)
-WOT? It is

intuitive that if Alice or Bob get too much information from the other player, (p, q)-(
1
2

)
-WOT shouldn’t be complete in the two-party scenario, so

(
1
2

)
-OT can’t be reduced

to (p, q)-
(
1
2

)
-WOT. The following theorem was proved in [16].

Theorem 2.1.
(
1
2

)
-OT can be reduced to (p, q)-

(
1
2

)
-WOT iff p + q < 1.

Note that the reduction in [16] works for the (p, q)-
(
1
2

)
-WOT that defined above.

However, if we define (p, q)-
(
1
2

)
-WOT as that Alice can guess Bob’s input correctly
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with probability 1/2 + p/2, and Bob can guess Alice input correctly with probability
1/2 + q/2, the reduction also works. We will use this feature in later.

Cheating Behavior

There are two cheating behavior in the two-party scenario. The first one, called
semi-honest(honest-but-curious), is that a cheating player follows the protocol, and
tries to break the protocol according to the information he got. The second one,
called malicious, is that a cheating player may not follow the protocol, and tries to
break the protocol. For example, if a protocol says that a player A should choose a
string x randomly, then for a malicious player A

′
, he may choose x according to some

information he got, and tries to get more advantage to break the protocol.

Mathematical Backgrounds

Definition 4. Let x be a random variable where x ∈ {0, 1}. we define the advantage
for guessing x as:

|Pr{x = 0} − Pr{x = 1}|

Lemma 2.2. Let x1, x2, · · · , xn be n independent randomly variables where xi ∈
{0, 1}, and |Pr{xi = 0} − Pr{xi = 1}| ≤ ε for all i ∈ {1, · · · , n}. Let x = ⊕n

i=1xi,
then

|Pr{x = 0} − Pr{x = 1}| ≤ εn

Proof. Let y1, y2, · · · , yn be n independent randomly variables and y = Πn
i=1yi, where

yi =

{ 1

-1

if xi = 0

if xi = 1

So Pr{xi = 0} − Pr{xi = 1} = E[yi], the expected value of yi, and solving Pr{x
= 0} − Pr{x = 1} is equivalent to solving the expected value of y.

|E[y]| = |E[Πn
i=1yi]|

= Πn
i=1|E[yi]|

= Πn
i=1|Pr{xi = 0} − Pr{xi = 1}|

≤ εn
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The lemma says that if for each random variable xi where i ∈ {1, · · · , n} , we can
only guess its value correctly with advantage ε, then we can only guess x = ⊕n

i=1xi

correctly with advantage εn, which is negligible when n is large.



Chapter 3

Malicious PIR implies OT

In this chapter we will present a
(
1
2

)
-OT protocol that works against malicious players

from any PIR scheme. The protocol is based on the
(
1
2

)
-OT protocol against semi-

honest players in [15], and is simpler than their protocol for malicious players.

Protocol 1.
(
1
2

)
-OT

A’s input: b0, b1 ∈ {0, 1}.
B’s input: c ∈ {0, 1}.
1. A randomly chooses n strings X1, X2, ..., Xn, where Xi ∈ {0, 1}k, for all i ∈
{1, 2, ..., n}

2. A randomly chooses 2n indices I1
0 , I

2
0 , ..., In

0 and I1
1 , I

2
1 , ..., I

n
1 , where Ij

i ∈ {1, 2, ..., k},
and sends them to B

3. For i = 1 to n, A and B invoke the PIR protocol, where A plays the role of
database and uses Xi as database string, and B plays the role of user and uses
I i
c as index. Let Y1, Y2, ..., Yn denote the bits that B retrieved.

4. A sets m0 = b0⊕X1[I
1
0 ]⊕X2[I

2
0 ]⊕ ...⊕Xn[In

0 ], and m1 = b1⊕X1[I
1
1 ]⊕X2[I

2
1 ]⊕

...⊕Xn[In
1 ], and sends m0 and m1 to B.

5. B computes bc = mc ⊕ Y1 ⊕ Y2 ⊕ ...⊕ Yn.

Correctness: If A and B both follow this protocol, B can get Xi[I
i
c] at each execu-

tion of PIR. After step 5, B knows X1[I
1
c ], X2[I

2
c ], · · · , Xn[In

c ] and mc. With these
information, B can compute bc correctly.

Privacy Against Alice: Informally speaking, B’s security follows from the user’s
privacy in the PIR protocol. Since the PIR protocol guarantees that A gets no infor-
mation about the index used by B, A cannot tell between the two indices. For the

9
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sake of contradiction, assume that after running this protocol, A can compute c with
probability at least 1/2 + δ, where δ non-negligible. It means that A can guess which
index sequence is the retrieved indices with probability 1/2 + δ. since all the PIR
invocations are independent, then for some position j ∈ {1, · · · , n}, A can tell which
index is used by user between Ij

0 and Ij
1 with non-negligible probability 1/2 + δ/n, a

contradiction.

Privacy Against Bob: If Bob is semi-honest, the security had been shown in [15].
So suppose Bob is malicious. Since Alice chooses all strings and all indices, and Bob
sends no messages to Alice except the execution of the PIR subprotocol, then the
only cheating way for malicious Bob is that he uses indices that different from I i

c in
some execution of the PIR subprotocol. There are totally 2n indices, and the PIR
subprotocol is only invoked n times. Hence, for some c

′ ∈ {0, 1}, Bob uses at most
half of the n indices of I i

c
′ . Since Alice sends at most k − 1 bits to Bob in each

execution of PIR subprotocol, Bob has some error probability to guess X[I i
c
′ ] if he

didn’t choose I i
c
′ in the i− th execution of PIR subprotocol. In order to show Alice’s

privacy against Bob, we need the following lemma that was proved in [15].

Lemma 3.1. Let (D, U) be a PIR scheme with database length k and communication
complexity cD(k). Let j be chosen uniformly from {1, · · · , k} at random and x be
chosen uniformly from {0, 1}k. Then there exists a constant l > 0 such that for every
interactive Turing machine U

′
, every rU ′ , and every k,either

Pr{(rD, t) ← tD,U
′ ((1k, x), ·, 1k, ru

′ ) : U
′
(1l, rU

′ , t, j) 6= xk} > l.

or

Pr{(rD, t) ← tD,U
′ ((1k, x), ·, 1k, ru

′ ) : U
′
(1l, rU

′ , t, j) 6= xk} ≥ (1− cD(k)/k)2.

The lemma says that for a uniformly chosen data string x for D, every cheating
user U

′
, after running (D,U

′
), has a non-negligible probability that fails in recon-

structing a data bit x[j] in a uniformly chosen location j. So every cheating Bob only
can guess x[j] with advantage at most ε, which is related to l or (1− cD(k)/k)2.

WLOG, we assume that Bob chooses at least n/2 indices from I1
0 , . . . , I

n
0 to invoke

the PIR subprotocol. So there are at least n/2 indices that not chosen by Bob in
I1
1 , . . . , I

n
1 . Assume that Bob chooses I1

0 , . . . , I
t
0 and I t+1

1 , . . . , In
1 , and Bob wants to

guess b1 = m1 ⊕ X1[I
1
1 ] ⊕ . . . ⊕ Xt[I

t
1] ⊕ Xt+1[I

t+1
1 ] ⊕ . . . ⊕ Xn[In

1 ]. By Lemma
2.2., we know that Bob’s advantage for guessing X1[I

1
1 ] ⊕ . . . ⊕ Xt[I

t
1] is at most εn−t

≤ εn/2. So Bob’s advantage for guessing b1 is at most εn/2.

Remark Note that our reduction is a black-box reduction. It means that the(
1
2

)
-OT protocol uses the PIR protocol as a subroutine with the only guarantee that

the bits sent from database to user is strictly less then the size of database. The
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reduction doesn’t rely on any specific features of the implementation of the PIR
protocol, and doesn’t need and additional assumption about the implementation.
Thus any idealized implementation of this primitive (as a black-box) will also work
for this reduction.



Chapter 4

The Completeness of Weak PIR

In this chapter, we discuss the question: In a two-party scenario, how weak can a
weak PIR model be that is still complete? For this purpose, we define a weak PIR
model. Then, we will give two bounds, one is for impossibility result and the other is
for possibility result.

4.1 Definition

We define the weak PIR model in a intuitive way:

Definition 5. A (p, k)WPIR is a two-party protocol between a database D and a user
U , where D’s input x is a n-bits string and U ’s input i is an index of n. The model
has three properties:

1. Correctness: If both parties follow this protocol, then U outputs x[i] at the end
of the protocol.

2. Security: After this protocol, for any cheating Database D
′
, he can know U ’s

index i with probability at most p.

3. Communication complexity: The bits that sent form Database to User is at most
k.

4.2 Impossibility Results

Is any (p, k)-WPIR protocol strong enough so that it can be complete? Intuitively
speaking, if p becomes larger and larger, database will get more and more information;
and if k is larger and larger, user will get more information. So how large van p and
k be so that a (p, k)-WPIR is still complete?

12
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It is well known that in a two-player setting with only noiseless communication,
OT with information theoretic security is not possible, even if players are semi-honest
[24]. Hence, if any two-player protocol can be securely implemented with only noise-
less communication, then OT can not be reduced to it.

Now, we show how to implement a (p, k)-WPIR in this manner for p ≥ 1/k.
Consider the following protocol, in which Database D’s input x is a string of length
n, and User U ’s input i is an index from {1, . . . , n}.
Protocol 2. Sim(p, k)-WPIR

1. U chooses k − 1 indices from {1,. . . , i − 1}, {i + 1, . . . , n} at random, and
sends them and i to D in a random order.

2. D sends the k bits of x to U according to the k indices he received.

By a straightforward analysis, since all the information D gets is the k indices, the
probability p that D can know U ’s index is at most 1/k. So this is a valid (p, k)-WPIR
protocol where p = 1/k. Suppose we have an

(
1
2

)
-OT protocol based on a (p, k)-WPIR

protocol where p = 1/k. If we replace each execution of (p, k)-WPIR by Sim(p, k)-
WPIR, then the

(
1
2

)
-OT protocol should still be secure since Sim(p, k)-WPIR has the

same security and communication complexity with (p, k)-WPIR. Therefore, we get a(
1
2

)
-OT with only noiseless communication, a contradiction.

The above argument was for p = 1/k. If p > 1/k, choose p
′
= 1/k, the impos-

sibility argument works for (p
′
, k)-WPIR1. Since p

′
< p, a (p

′
, k)-WPIR primitive

also meets the requirements of a (p, k)-WPIR. Therefore, if OT can’t be reduced to
(p
′
, k)-WPIR, it can’t be reduced to (p, k)-WPIR, either. We conclude the above

arguments to the following lemma.

Lemma 4.1. There is no reduction from OT to (p, k)-WPIR for any p ≥ 1/k, even
if only security against semi-honest parties is required.

4.3 Reducing Weak OT to Weak PIR

The previous section shows the impossibility results for p ≥ 1/k. An immediate
question is: When p < 1/k, can OT be reduced to (p, k)-WPIR? In this section, we
will give a bound for possibility result.

Lemma 4.2. Let n be the length of Database’s input and l be defined as in Lemma
3.1..

(
1
2

)
-OT can be reduced to (p, k)-WPIR for either p < 1

k
− 2(n−k)

n
− 1

n
or p <

1
k
− 2t + n+k−1

n
where t = 1 − l.

Proof. We describe our proof idea. In the previous chapter, we construct a protocol
that reduce OT to PIR. So if we replace each execution of PIR by Weak PIR, can we
get a protocol that reduce Weak OT to Weak PIR? Consider the following protocol:
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Protocol 3. (p
′
, q

′
)-WOT(b0, b1)(c)

1. A randomly chooses an n-bit string x.

2. B randomly chooses two indices I0 and I1, where I0 and I1 ∈ {1, 2, ..., n}, and
sends them to A.

3. A and B invoke the Weak PIR protocol (p, k)WPIR, where A plays the role of
database and uses x as input, and B plays the role of user and uses Ic as input.
Let Y denote the bit that B retrieved.

4. A sets m0 = b0 ⊕X[I0], and m1 = b1 ⊕X[I1], and sends m0 and m1 to B.

5. B computes bc = mc ⊕ Y .

This protocol is a simplified version of Protocol 1, so the correctness follows.
Now, we look at what p

′
and q

′
are. It’s clear that if A knows B’s index c if and

only if he knows which index that B used in the execution of Weak PIR. Since the
execution of Weak PIR has probability p that leak the index c to Database, the
probability that A knows c is at most p.

We now start looking at what q
′

is. What is the best way of Bob for guessing
bc̄? Since Bob only knows two randomly chosen indices I0, I1, and the messages
he got during the execution the PIR subprotocol, his best way for guessing bc̄ is to
guess x[Ic̄] according to these information. Therefore, the probability that Bob knows
bc̄ is equivalent to the probability that Bob knows X[Ic̄] after the execution of the
PIR subprotocol. By Lemma 3.1., we know that the probability that Bob fails to
reconstruct X[Ic̄] is non-negligible. For example, if k = n − 1, the failure probability
is at least (1 − k/n)2, and if k ≤ k/2, the failure probability is constant. Thus,
the probability that Bob learns both X[Ic] and X[Ic̄] is at most either (2kn− k2)/n2

or some constant t. Since (p, q)-WOT means that Bob can guess bc̄ correctly with
probability at most 1/2 + q/2, Therefore

q
′ ≤ 2(

2kn− k2

n2
− 1

2
)

=
k − 1

n
+

3kn− 2k2 − n2 + n

n2

<
k − 1

n
+

2kn + n2 − 2k2 − n2 + n

n2

<
k − 1

n
+

2k(n− k) + n

n2

<
k − 1

n
+

2(n− k)

n
+

1

n

or



The Completeness of Weak PIR 15

q
′ ≤ 2(t− 1

2
)

<
k − 1

n
+ 2t− n + k − 1

n
.

Therefore, if q
′
< k−1

n
+ 2(n−k)

n
+ 1

n
, we choose p

′
< 1

k
− 2(n−k)

n
− 1

n
such that

p
′
+ q

′
<

1

k
− 1

n
+

k − 1

n
+

1

n

=
1

k
+

k − 1

n

<
1

k
+

k − 1

k
= 1,

and if q
′
< k−1

n
+ 2t− n+k−l

n
, we choose p

′
< 1

k
− 2t + n+k−1

n
such that p

′
+ q

′
< 1.
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