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Abstract

We studytherelationshipbetweerthe protocolPrivate InformationRetrieval andthe prim-

itive One-wayPermutations As shown in [20] thatthe existenceof one-way trapdoorper

mutationimpliesthe existenceof privateinformationretrieval, we follow the methodology
suggestedn [14] and provide strongevidencethat the corverseis not true. Namely the

existenceof privateinformationretrieval is not likely to be a sufficient conditionfor the

existenceof one-way permutationshencenot a sufficient conditionfor the existenceof

one-way trapdoormpermutations.
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Chapter 1

Intr oduction

Modern Cryptography

Cryptographywas of interestlong beforethe arrival of computey andwas consideredas
an exclusive domainof the military for mary years. However, public academiaesearch
during the past30 yearshastransformeahis secretart from a semi-scientificdiscipline
to arespectabldield in theoreticalcomputerscience.The notion of securityis now well
definedin termsof informationtheory and of compleity theory. Modern cryptography
focuseamostlyonthelatter. Thatis, the securityof a protocolis basedn the infeasibility,
ratherthantheimpossibility of extractingsecretsMore preciselytheadwersaryis assumed
to have only limited resourcesatherthanbeingall-powerefulin areasonablesense.

Despiteenormougfforts onthestudyin computationatompleity, computeiscientists
have beenfrustratedin finding out mary of the relationshipsamongcompleity classes.
One of the fundamentalrelationshipthat is unknavn, unfortunately is the relationship
between? and A P. Thereforein moderncryptography mosttheoremsare unavoidably
basedon unprorenassumptionsuchasthe existenceof one-way functions[13], whichin
particularimplies ? # N P.

Similarly, finding out the relationshipsamongprimitivesis oneof the majorissuesof
thestudyin moderncryptography Thisis donewith muchsucces#n thelastfew decades,
that mostprimitivesfall into two cateyories: either one-way functionsare sufficient and
necessaryor strongemropertiedik e trapdoorand/orinjective arerequired® For example,
pseudorandomgenerator$12], signatureschemeg24, 26, commitmentschemg12, 23]
andzero-knavledgeproofsfor AP [11, 25] areall shown to exist if andonly if one-way
functionsdo. In the somavhat more versatilecategory including public key encryption

LlWe sometimeseferto the formeras“privatecryptography”andto thelatteras“public cryptography
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[9, 2, 7], oblivioustransfer securefunctionevaluation[27, 17, 3, 7], key agreement6, 14,
29], andtrapdoorpermutationg30, 20], however, primitivesarenot all equivalentto each
other Someof themareevenincompagble (e.g. PKE andOT [7]), andthereis no simple
hierarchyof assumptiongn this world.

A standardwvay to prove thatthe existenceof a primitive Q impliesthe existenceof a
primitive P is to find areductionfrom P to Q. However, to prove thatthe existenceof prim-
itive Q is nota sufficientconditionfor theexistenceof primitive P is notasstraightforvard,
especiallywhenboth primitivesarecommonlybelievedto exist; areductionitself canjust
ignorethe sourceprimitive Q andbuild thetargetprimitive P from scratch.While it is in-
deedvery difficult to prove thefailure of all reductionsjmpagliazzcandRudich[14] gave
a methodfor separatingprimitvesundera restrictedbut importantsubclasf reductions,
namely black-boxreductionsInformally, a black-boxreductionfrom primitive P to prim-
itive Q is a constructionof P out of Q thatviews Q asa black-box(a subroutine) rather
thanusingtheinternalstructureof theimplementatiorof Q. More formally, the reduction
is to constructanoracle Turing madinethat,givenoracle accesso animplementatiorof
Q, implementsP. A black-boxreductionis alsoknown asarelativizingreductionbecause
the reductionrelativizes Thatis, if thereexists a black-boxreductionfrom primitive P
to primitive Q, thenrelative to any oraclethe existenceof Q implies the existenceof P.2
Thereforejn orderto show thatthereareno black-boxreductionsrom P to Q, it sufficesto
find anoraclerelative to which Q existsbut P doesnot. Ruling outthe possibility of black-
box reductiondrom primitive P to primitive Q is avery strongevidencethatthe existence
of Q is not a sufficient conditionfor the existenceof P, in the sensdhatalmostall known
implicationsamongprimitivesareprovedin ablack-boxway (hold relative to any oracle),
with [10]® beingoneof thefew exceptions.Thus,it is quite“safe” to saythat“primiti ve Q
doesnotimply primitve P” if we canshaw thatthereareno black-boxreductionsfrom P
to Q. Usingthis powerful methodology(the oracleseparatiorparadigm) Impagliazzcand
Rudichshonvedthat one-way permutationsio notimply key agreemenfunderblack-box
reduction).And in [7], Gertneretal. shavedatwo-sidedseparatiorof PKE from OT. This
resultis rathersurprisingandinspiredusfor furtherstudy

2SeeLemma.1for moredetail.
3In [10], the proof of “the existenceof one-way permutationgmplies the existenceof zero-knavledge
protocolsfor all languagesn A'?” doesnotrelativize.
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Our work

Althoughthepositionsof almostall theimportantprimitivesareresohed,therelationships
betweerthe morerecentlyintroducedprotocolPrivate InformationRetrieval [4] andother
primitivesarenot well understoodInformally, a PIR protocolallows a userto retrieve in-
formationfrom a databasevhile maintainingthe queryprivatefrom the databasenanager
The strongessufficient (resp.necessarygonditionfor the existenceof PIR known sofar,
is the existenceof one-way trapdoorpermutationd20] (resp. the existenceof OT [5]).
In this work we follow the oracleseparatiorparadigmandshav that PIR doesnotimply
one-vay permutationsinderblack-boxreduction.Specifically we constructanoraclethat
is “almost” randomandrelative to which PIR exists, basedon the resultRudich shaved
in [28] thatone-way permutationglo not exist relative to anoracleconsistingof arandom
functionanda PSS PAC‘E-completeoracle we thenshowv thatone-way permutationslo not
exist relative to our oracleuniona PS5 4P CE-completeone.

As pointedoutin [14], non-black-boxnon-relatvizing) reductiongrom one-way per
mutationsto PIR, thoughbelievedto be difficult to find, arestill possible. Nevertheless,
we hopethatproviding sucha strongevidencethat”PIR doesnotimply one-way permuta-
tions” will helpto betterunderstandhestructureof PIR andit’ scryptographicsignificance.

Outline

We give notationanddefinitionsaswell assomebasicprobabilitytheoremsn Chapter2.
A briefintroductionto theoracleseparatiomparadigmis alsoincluded.And themainresult
“privateinformationretrieval doesnotimply onw-way permutations’ls provedin Chapter
3.



Chapter 2

Preliminaries

2.1 Notation and Definitions

In this sectionwe give formal definitionsof the primitive One-wayPermutationsandthe
protocolPrivate InformationRetrieval, aswell asothernotationandcorventions.

We abbreviate probabilisticpolynomialtime Turing machinewith the notationPPTM,
anduseUy, to denotetherandomvariableuniformly distributedoverthe setof n-bit strings.
Namely PriU, = u] equals2~" if u € {0,1}" andequals0 otherwise.And usek to denote
the securityparameterof cryptographigrimitivesandprotocols! Let x bea bit string,we
usexi] to denotetheit" bit of x.

Security

Intuitively, aprimitiveor aprotocolis secueif the“secret”cannotbeefficiently computed.
An efficient computationis onewhich canbe carriedout by a PPTM, thusby securewe

meanthat every adwersaryPPTM outputsthe secretsuccessfullywith only a negligible

probability. Formally, we call a functionnegligible if it vanishedasterthanthe inverseof

ary polynomial.Namely

Definition 1 (Negligible Functions). A functionv : N — R is negligible if for everypoly-
nomial p(-) there existsan integer ng sudh thatfor all n > ng

1
p(n)

LIn generaltheinputlengthandtherunningtime of all PPTMsinvolvedwhendiscussinga primitive or a
protocol,will bepolynomialin k. However, in aPIR protocol,theinputlengthwill bepolynomialin k+ |db,
wheredb is the database.

v(n) <
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For example,the function 27" is negligible. Note that a function remainsnegligible
whenmultiplied by any fixedpolynomial. It follows thataneventwhich occurswith negli-
gible probabilityis highly unlikely to occurevenif we repeathe experimentpolynomially
mary times.

One-way Permutations (OWPSs)

A functionis called one-wayif it is easyto computebut hardto invert, andis calleda
permutationf it is injective (one-to-one andonto. Formally,

Definition 2 (One-way Permutations). A functionf : {0,1}* — {0,1}* is called a one-
way permutation OWP) if thefollowing threeconditionshold

1. Permutation: For eadh k € N, f is an injectiveand onto mapfrom k-bit stringsto
k-bit strings.

2. Easyto compute: Thee existsa deterministicpolynomial-timeTuring madine M,
sothatoninputx theturing macdine M outputsf (x).

3. Hard to invert: For everyPPTMM’, everypolynomialp(-), there existsan integer ko
sud thatfor all k > kg

PriM’(f(Uy) = f1(f(Uy)] < oK)

Note thatthereis in facta collectionof permutationseachon the set{0,1}*. A more
generaland commondefinition is to have eachpermutationdefinedon someset Dy C
{0,1}'® for somefixed polynomiall (-). We adoptthis simplified versionasin [28].

Emsemblesand Indistinguishability

Definition 3 (Ensembles).Let | be a countableindex set. An ensemblandexedby | is
a sequencef randomvariablesindexedby I. Namely X = {X;}ic|, whee the X;’s are
randomvariables,is an ensembléndexedby .

Typically, N is the index set,and eachX; rangesover bit stringsof lengthi. Herein
our applicationswe will useN astheindex setasusual,but X; will be rangingover bit
stringsof lengthl (i), for somefixed polynomiall (-). For example,ensembleof the form
{F (Ui) }ien, whereF is alength-triplingfunction, will beused.
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Definition 4 (Computational Indistinguishability). Twoensembles, X, }nen @and{Yn}nen,
areindistinguishablén polynomial-timef for everyPPTMM, everypolynomialp(-), there
existsan integer ng sud thatfor all n> ng

1
|PIM (Xn, 1) = 1] = P{M(Yp, 1") = 1]| < —
p(n)
Thatis, two ensemblesreindistinguishablef for every PPTM, the distancebetween
the above two probabilitiesis a nggligible functionin n. The probabilitiesaretaken over
the correspondingandomvariablesandtheinternalcoin tosseof the PPTM.

Private Information Retrieval (PIR)

Informally, A PIR protocol allows a userto retrieve information from a databasevhile
maintainingthe queryprivatefrom the databasenanager

Two-party Protocols A two-partyprotocolis a probabilisticprocessvheretwo parties
(two PPTMs),exchangemessagebit strings)in turns. Eachmessageaentby a party is
a function of its input, its randomstring and previous messagegxchanged. A passof
the protocol consistsof a single messageentfrom one party to the other And the total
messageexchangediuringthe processs calledthe corversation

PIR protocols We modelthe databaseas an n-bit string x and model the queryasa
(logn)-bit stringi, calledtheindex. Theuseris interestedn theit™ bit of x, denotedby x]i].
SoaPIR protocolis a two-party protocolwith two PPTMsMs (the sener) andMy (the
user).Theinputto Mgis x andtheinputto My isi and1" (thelengthof thedatabasevritten
in unary).At theendof theprotocolMy outputsx[i], whereas is “unknown” to My . That
is, thereis no PPTM candistinguishthe corversationgeneratedy the two partieswhen
the useris interestedn x[i] andthe corversationgeneratedvhenthe useris interestedn
x[j]. Furthermorewe requirethatthe total numberof bits sentfrom Mg to My is strictly
smallerthann. Otherwise sendingthe entiredatabas¢o theuserwould beatrivial way to
accomplistthis task.Formally,

Definition 5 (Private Information Retrieval). A two-partyprotocolbetweerMsandMy
is called a privateinformationretrieval protocolif thefollowing threeconditionshold

1. Correctnessif bothpartiesfollow theprotocol,thenMy (i, 1") outputsx|i] at theend
of the protocol.
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2. Security:For ead pair ofindex sequence$in }neny and{ jn}nen, Whereeadip, jn €
{0,1,...,n— 1}, the corversation ensemble{a,} (whenMy’s index is {in}) and
the corversation ensemble{,} (whenMy'’s index is {jn}) are indistinguishable
Namely for every PPTM M, every polynomial p(-) there existsan integer np such
thatfor all n> ng

1
PiM(an,1") = 1] = P{M(Bn, 1") = 1]| < —<
p(n)
3. CommunicationCompleity: The total numberof bits Mg sentto My is strictly
smallerthann.

Condition1 is sometimeselaxedto allowing a negligible probability of error Herein
our applicationthe useralwaysgetsthe correctanswer

We say that a sener is honest-hit-curiousif the sener follows the protocol and is
maliciousif it doesnot. A malicioussener maybehae in anarbitraryway, for example,it
may alterthe contentf x. Thustherearetwo versionsof securityin condition2. Namely
securityagainsthonest-bit-curioussener and securityagainstmalicioussener. We will
shav thatevenmalicious-PIR‘doesnotimply” OWPs.

Note that the security parametelk doesnot appearin the definition at all. For our
purposewe setk = n!/T for someconstantr > 2.

2.2 Black-box Reductions

Oracle Machines An oraclePPTM, denotecby M, is a PPTM M thathasaccesgo a
givenoraclel’, suchthatin onetime stepM may receve the answerto a singlequeryto
. Whendiscussinga primitive or a protocolrelative to an oracle,we assumehatall the
machineghatareinvolved (includingthe adwersarythattriesto breakthe primitive) arein
factoraclemachinesvith accesso thesamefixedoracle.An oraclel’ maybetheunionof
two oracles¥ andA. We usethe notationM* to denoteM" .

Black-box Reductions A black-boxreductionfrom a primitive P to a primitive Q is a
constructionof P out of Q thatignoresthe internal structureof Q. More precisely this
is a constructionof two oraclePPTMsM andAq suchthat, if N is animplementatiorof
Q thenMN is animplementationof P andfor ary adwersaryAp that breaksMN (asan
implementatiorof P), Ag’AP breaksN (asanimplementatiorof Q).

For example,assumethat (Ms,My ) is an implementationof a PIR protocol, thena
black-boxreductionfrom OWPsto PIR is a constructiorof two oraclePPTMsM andAp|r
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suchthatMMsMu computesOWPsandfor ary adversaryAowp thatbreakMMsMu (inverts
the permutationwith a non-ngjligible probability when the input is chosenrandomly),
A'Q,"@MU Aowe breaks(Ms,My ) (outputsthe users index with a non-ngligible probability,

givenonly the corversation). Our goalis to shav thatthereareno black-boxreductions
from OWPsto PIR. With the following lemma,we only needto find an oraclerelative to

which PIR existsbut OWPsdo not.

Lemma 2.1. Assumehatthereis a bladk-boxreductionfroma primitive P to primitive Q,
thenrelativeto anyfixedoracle the existenceof Q impliesthe existenceof P.

Proof. Assumethatthereis a black-boxreductionfrom primitive P to primitive Q, then
thereexiststwo oraclePPTMsM andAq suchthatMN implementsP whenever N imple-
mentsQ andA(N?’AP breaksN (asanimplementatiorof Q) whenaer Ap breaksMN (asan
implementatiorof P).

Let I' be any oraclerelative to which primitive Q exists. Thusthereexists an oracle
PPTMN' thatimplementsQ andthereis no oraclePPTMwith oracleaccesgo I' breaks
N In additionMN" is animplementatiorof P relatveto I', by theassumptiorthatblack-
box reductionfrom P to Q exists.

Now assumédor contradictionthatrelative to I' primitive P doesnot exists. Thatis,
relatve to I' any implementatiorof P canbe broken. Thus,thereis an oraclePPTM A,E

that breaksMN' (asanimplementationof P relatve to I'). So Agr’AE breaksN' (asan
implementatiorof Q relativeto I') by theassumptiorthatblack-boxreductionfrom P to Q
exists. Clearly, Agr’A'g canbe simulatedby anoraclePPTMwith oracleaccesnly to .
Thisis a contradictionto theassumptiorthatQ existsrelativeto I'. O

Black-box Constructions A black-boxconstructionfrom a primitive P to a primitive Q
is like a black-boxreduction exceptthatthe adversaryoraclePPTMAqg may usetheinter-
nal structureof theadwersaryoraclePPTM Ap. Thatis, for every machineAp, thereexists
amachineAq suchthat,if Ap with oracleaccess¢o N breaksMN (asanimplementatiorof
P) thenAq with oracleaccesso N breaksN itself (asanimplementatiorof Q).

The Oracle Separation Paradigm

Let P andQ betwo cryptographigorimitives. To separatd® andQ with respecto black-
box reductionswe constructan oraclel" suchthatrelative to I' the primitive Q exists but
P doesnot. Thisin itself is enoughto concludethatthereis no black-boxreductionfrom
P to Q. In fact, Impagliazzoand Rudich[14] suggested more powerful methodology
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which we follow in our separationin [14], " is constructedasa union of anoracleO and
aPSPACE-completeoracle. Thefirst stepis to shav thatthereexistsanimplementation
of Q usingonly O, which is securewith respecto I'. Thatis, theadwersarytrying to break
Q hasoracleaccesgo both O andthe PSPACE-completeoracle. Second prove that if
P = ALP thenrelative to O thereis no secureimplementationof P. Sincerelative to a
PSPACE-completeoracle? = A P, we concludethat

e Thereis noblack-boxreductionfrom P to Q. Furthermore,

e “P = AP impliesthatthereis no black-boxconstructiorfrom P to Q. Thatis, to
provide sucha black-boxconstructions atleastashardasproving ? # N P.

Our goal is to constructan oracle O suchthat an implementationof PIR using only O
is securerespectto I' (unionof O anda PSPACE-completeoracle). And show that if
P = NP thereareno OWPsrelative to O. Basedon the resultprovenin [28, 21] that
relatveto arandomoracleno OWPsexist, we constructheoracleO suchthatit is “almost”
randomandthe non-randonpartscanhelpto build the protocolPIR.

For simplicity, we only shav the first conclusionthat no black-boxreductionsfrom
OWPsto PIR exist, but the theoremalsoimplicitly leadsto the secondconclusionmen-
tionedabove.

2.3 Mathematics Background

In this sectionwe give the pigeonholeprinciple and somebasicprobability theoremghat
will beusedlater.

Theorem 2.2 (PigeonholePrinciple). LetAbeaBooleanmatrixwithal— a3 proportion
of 1's. Thena 1 — a portion of thecolumnshaveat leasta 1 — 3 portionof 1's.

Proof. It sufficesto notethatthe worstcaseis whenthe O’s areconcentratedh aa by 8
rectangle. O

Theorem 2.3 (Mark ov Inequality). Let X be a nonngativerandomvariable andt bea
positivereal number Then

dezt]gg
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Proof.
EX] = zPI’[X =X]-X

> ZPr{X:x]-O—i- ZPl{X:x]-t

— PX>1]-t

Theorem 2.4 (Chebysher Inequality). LetX bearandomvariable andd > 0. Then

Var X]
2

Pr[|X —E[X]| > 3] <
Proof.

PiX—E[X]| >8] = PrH(X—E[X])?> ]
E[(X — E[X])?]
< -5
O

Theorem 2.5 (Borel-Cantelli Lemma). Let B1,B,,... be eventson the sameprobability
space Theny»_; Pr{Bp] < o impliesthat Pr{(,_; Un>kBn] = 0.

Proof. LetB=_1 Un>kBn, andAx = Upn>k Bn. SothatB=}_; Ag; in particular B C A,
forallk. If 371 Pi{Bn] < o, thenfor everye > Othereexistsak > O suchthaty > Pr{By] <
€. We have

Pr{B] < PrA] < Z(Pf[Bn] <e

andsincee canbearbitrarily small, we musthave Pr{B] = 0. O

Lemma 2.6. A uniformly-distributed,length-tripling function f : {0,1}* — {0,1}* is in-
jectivefor suficientlylong inputswith probability one

Proof. The probability that f is not injective on the domain{x : x € {0,1}"} is at most
21.(2"—1)/2-1/2%" < 1/2". Sincey>_;1/2" < «, by the Borel-CantelliLemmaf is
injective for sufficiently long inputswith probability one. O



Chapter 3

PIR DoesNot Imply One-way
Permutations

In this chaptemwe constructanoraclel” relative to whichthereis a 2-passPIR protocolbut
no one-way permutations.Let k be the securityparameter The oraclel” consistsof the
following parts.

e A PSPACE-completeoracle.

An injective, uniformly-distributed,length-triplingfunctionF (-, -).

A uniformly-distributedfunctionS: {0,1}* — {0, 1},

A uniformly-distributedfunctionT : {0,1}* x {0,1}* — {0, 1}.

A function G definedasfollows.

( X[i]@®T(S(x),m) if x| is powerof 2anddi,me {0, 1}*
suchthat|i| = log|x| andy = F (i,m)
G(x,y) =< (call such(x,y) valid)

0 otherwise
L (call such(x,y) invalid)

NotethatG is well definedaslong asF is injective, andthatwe canessentiallyignore
the restrictionon F beinginjective since,with probability one, a randomlength-tripling
function s injective for sufficiently long inputs. And notethat S and G are actuallytwo
familiesof functions{ S} ke and{ Gy }ken-

Thedesignof G is to allow the user who hadchoserm, to computex|i] whereadrom
thesener’s pointof view (withouttheknowledgeof m), G is thevalueof arandomfunction

11
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onsomeunknavn input, whichis ameaninglessandombit. Furthermoreit is very hardto
gueryG onavalid inputwithoutfirst queryingF. However, G(x, F (i, m)) canbecomputed
without actuallyqueryingthe oraclefunctionif i andm areknown, whichis the caseif F
is queriedfirst. Soit is unlikely thatG is “useful” to any one-partyprimitive.

3.1 2-passPIR Usingthe Oracle

By paddingredundan®’s, we may assumehatthe lengthof the database is power of 2.
For example,if |x| = 513,we pad5110’s atthe endof x. This increaseshe lengthby a
factorof two atmost. Thefollowing is a 2-passPIR usingthe oracler .

Theuserselectam e {0, 1}¥ uniformly andsendsur = F (i,m) to thesener. Thesener
thensendsos = S(x) andag = G(x,aF ) backto theuser At the endof the protocol,the
useroutputsog @ T (as, m).

Server User
ar—F(,m Selectm e {0, 1} uniformly

a5=S(), 0s=G(xaF) X[i] = ag® T (as,m)

Correctness If boththe sener andthe userfollow the protocol, the usergetsS(x) and
G(x,F(i,m)) attheendof corversation.RecallthatG(x, F (i,m)) = X[i] & T (S(x),m). So
with the konwledgeof mandS(x), theusercancomputex(i].

Communication Complexity The original condition requiresthat the total numberof
bits sentfrom the sener to the useris strickly smallerthanthe length of the datatbase.
However, the lengthof the databasenay be doubledsincewe paddedsomeredundan®’s
to make thelengthpower of 2. Sowe needto make surethat|as| + |ag| = k+ 1 is strickly
smallerthan|x| /2. We could, for example,setk = |x|1/T for ary constant > 2.

Security As for the securityof the protocol, we shall showv thatthe sener is unableto
distinguishar from ar, the only informationsentby the userwhenit is interestedn Xi]
andx[j], respectrely. If the sener doesnot querythe function G, the proof is standard
usingthe fact that the restof the oracleconsistsof merelyrandomfunctions. However,
unlessthe sener queriesG on somedistinct (xg, o) and(xz,0g) suchthatS(x;) = S(x2),
which is unlikely to happensincethe rangeof Sis large, G actslike a randomfunction
also. Note that the function S (asa randomhash)in the definition of G is essential;if
we defineG(x, F (i,m)) = X[i] @ T (m) insteadof x[i] & T (S(x),m), asingleG(x, F (i,Uy))
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maybeauniformdistribution but for any x; andxz, G(x1, F(i,Ux)) andG(xo, F(i,Uy)) are
correlated.

Sincen andk arepolynomiallyrelated we prove the security(indistinguishabilityof o
anda’) of the protocolin termsof k. We state without proof,alemmaneededor themain
theoremfirst, andthenprove it afterthetheorem.Sinceevery PPTM canbe simutatedby
(non-uniform)polynomial-sizecircuits, we prove the strongerstatementhatthereareno
polynomial-sizecircuits candistinguishthetwo corversations.

Lemma 3.1. Let {Cy}ken be a family of polynomial-sizeoracle Booleancircuits and let
{ik}ken, {ik}ken betwo sequencesfindiceswith ead |ix| = |jk| < k® for someconstant
c. Definea sequencef randomvariablesXy(I", m) = Cf. (F (ix,m)) —Cf (F (jk, m)), whee

m e {0,1}¥, thenboth ‘ E [X] ‘ andE [( E [X] )2} are boundedby poly(k)/2* for some
m m
polynomialpoly(-).

We now prove the maintheorem.

Theorem 3.2. With probability one over randoml’, for any constantc, any fixed pair of
sequencesf indices{ix}ken and {jk}ken With ead |ix| = | jk| < k&, the two ensembles
{F (i, Uk) } ey @Nd{F (jk,Uk) } o areindistinguishableevenby non-uniformeircuits.

Proof. Wefirst show thatfor ary pair of sequencesiy }ken, { jk}keny @ndary polynomial-
sizeoraclecircuits {Cy }ken,

I ; . . r . -
erl|Pr (G (FGem) =1~ P [CE(F(im) 1]

is negligible for all sufficiently large k’s} =1

Let X (T, m) = Cf (F(ix,m)) — C{ (F(jk,m)) be asequencef randomvariables,and
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o(k) besomefunctionthatwe will determindater, then
Fr>r“ Pr[Ci (F(ik,m) = 1] = Pr|Cy (F (i, m)) = 1] ‘ > 6(k)]
—prl E %] | > 6(k)]

<pr||EX] | E

r,m

xJ1|+] £, xd | > 200

cJe-lg)]
< ;
(30| .& 1xd])

G
(o] g )

By Lemma3.1we knowthatboth‘ rE (X ‘ andIrE [(E[Xk])z] areboundedy anegligible
,m
functiong(k) (> 0Vk € N). Setd(k) to bethenggligible function {/¢(k) + €(k), we have

FFrU Pr(Ci (F(ik,m) = 1] —Pr[Cy (F (jk,m) = 1]‘ > v/e(K) +£(k)}

g e(K)

(Ve +ek) —£(k)

= Ve(K)
By thedefinitionof negligible function, thereemstsako suchthats( k) < 1/k*for all k > ko;
V/€(K) < 1/k? for all k > ko. And since Z 1/k? corverges, Z v/€(K) alsocorverges.By

the Borel-Cantelli Lemma, the probability over random[™ that ‘ Pr [Cl (F(ik,m) =1] —
Pr [CF (F(jk,m) =1] ‘ is greatetthanthenegligible functiond(k) for infinitely mary k'sis
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zero.Thuswith probabilityoneoverrandom,

Pr[CE (F ik, m) = 1] —Pr[Ck (F (ji,m) =
1] ‘ is negligible for all sufficiently largek’s.

For everycombinatiorof {ix }ken, { jk}ken @nd{Cy }ken, wethrow outthemeasureero
of I"'s relative to which ‘I?nr[C[(F(ik, m) =1] — E’nr[Cl[(F(jk, m)) = H is greaterthan
d(k) for infinitely mary k's. Sincethereareonly countablymary {ix}'s, { jk}'sand{C}'s,
we have thrown out measurezeroin all. Thusthe two ensembles{F(ik,Uk)}kGN and

{F (jks Uk) }keN areindistinguishableelative to theremainingmeasureoneof the oracles.
0]

We now prove Lemmaa3.1.

Claim 3.3.

rE [Xd] ‘ in LemmaB.1is boundedy poly(k) /2X for somepolynomialpoly(-).
m

)

Proof. Definethefollowing probability events

e B;:Cl makesoraclequeryto F orto T on (z,m) for somez € {0,1}*.

e B, : Cl makesoraclequeriesto G on (xg,y) andon (xz,y), wherexy, x,y € {0, 1}*
suchthatx; # x2 andS(x1) = S(x2) € {0, 1},

e B:Bi1UB:.

andusethe notationw = B to denotethat B happensvhentheinputto CI[ A
Let p = p(k) be a polynomial that boundsthe size of the circuits Cy,* and note that
on input F(ix,m) all “useful” information (arything that is differentwhen the input is
F (i, m) andwhenthe inputis F(j,m)) thatC] cangetis the function valuesF (i, m),
G(xa, F(ik,m)) = xa[ix] ® T (S(X1), M), ..., G(Xp, F (ix, M) = Xp[ir] & T (S(Xp),m). Simi-
lary oninputF (jx,m), Cl getsF (jk,m), G(xX, F (jk, M) =X [jll @ T(S(4),m), ..., G(X,, F(jk,m)) =
X[ k] © T (S(x,), m). Obserethatif Cf doesnotmake oraclequeryto F norto T on (z,m)
for somez e {0,1}*, theinformationis just the valuesof randomoracleon someunknown
locations.Furthermoref noneof S(x1), ..., S(Xp) (S(x}), ---, S(X;)) areequal theseoca-

tionsareall distinct. Sothesewo distributions,(F (i, M), G(x1, F (i, m)), ..., G(Xp, F ik, m)))

and (F (i M), G(X, F (jks M), ..., G(Xp, F (jk, m))) , areidenticalwhenwefix everything
elsebut vary over F (ix, m), F (jx, m) andT (x,m), whereT (x,m) = {T(zm) : z€ {0,1}*}.
Thusconditionedon F (ix, m) = B andF (jk, m) (= B,

T (E(i (i %
o Exn 1o [ CF (F o) =L (F (Gom)]

INotethattheinputlengthof Cy is 3(|ix| + k) insteadof k. Suchpolynomialexists, however, if |iy| < k°
for someconstant.
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for any mandm\{F (ix,m) UF (jk,m)UT (x,m)}. We have
E %]

(G (F(iom) ~ L (F () |

< Pr [F(im) = BorF (jm) =]

erm:ClE(F(ik,m))—Ck( it M) |F (i, m) |= B or F(ji, )\:B”
+rPnr1[F(ik’ m) i B andF (ji,m) i B
| [ (F () = CF (F (jicm) [F1om) B andF (j.m) 3 B]

L
m[ (ik,m) =BorF(jx,m EB]-1+1-0
(rF’>r [F (i, m) = Bq] +r|i>r[ (i, m) = By])
2(p(kg/2+ PRI =D 3
= p(k) (p(K) + 1) /2
U
Claim 3.4. F[(E [Xk])z] in Lemma3.1is boundedby poly(k)/2X for somepolynomial
poly(-).
Proof. EventsB1, B, andB aredefinedasin Claim 3.3,anddefinein addition
e B':C| malesoraclequeryto G on (z,F(z,m)) for somez,z, € {0,1}*.

Letnt € {0, 1}, RecallthatG(x,F(i,m)) = x[ij@ T (S(x),m) andobserethatF (ix, m),
F(jk,m) and T (x,m) do not affect C (F (ix,m')) if Cx doesnot male oraclequeryto F
norto T on (z;,m), norto G on (z,F(z3,m)), for somez;,z,,z3 € {0,1}*. Thuscon-
ditionedon “m# m' andF (ix, M) = BUB' andF (ji,n) ¥ BUB',” both C[, (F (ix,m))
andC{ (F(jk,n)) areconstantvhenwe vary over F (ix,m), F(jk,m) andT (x,m). Thus
conditionedon “m# m andF (ix,m) j= B andF (ji,m) % B andF(ix,n') = BUB' and
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F(ik,n) = BUB'

B[ (F i m) = CL (F (ko m) ] - [GF (F it ) = CF (F (i, m))] |
F('k’TglFmg'k’m)

F(ikam)aF(jkam)aT(*ﬂm)
=0

Cr (F(ik,m)) —Ci (F(jik, m))} - someconstant

for any m, m' andlM\{F (ix,m) UF (jk, m) UT (x,m)}. We have

< ﬁ’rm([m:n{].1+1-r,r|r5]’m[[C[(F(ik,m))—C[(F(J'k,m))]
- [Ck (F(ik ) = CF (F (ko m))] [m# |
§1/2"+ Pr [F(i,m) = Blm# ] + rm[F(Jk,m Blm# ]

’ dl

+r,§fm[<lk, ) =BUB|m£ ]+ Pr[F(j,m) =BUB/|ms~ ]

+1-0
+2 Pr [ (ik, ):B’\B\m;ém(
/2k+2p(k)(p( K)+1)/2¢+2- p(k) /2%

<1
< (2(p(k))®+4p(k) + 1) /2

3.2 No OWPsRelativeto the Oracle

In this sectionwe showv thatno OWP existsrelativeto I'. It wasshown in [28, 21] thatno
OWPsexist relative to a randomoracleuniona ?PSPAC‘E-completeoracle. We proceed
by shawing thatthe function G doesnot help building OWPseither?

°Note thatwe canaasociateseveral randomfunctionswith a singlerandomoracle,andthatwith proba-
bility onearandomlength-triplingfunctionis injective for sufficiently long inputs.
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A first attemptis to seeif thefunctionG canbe constructedy usinga randomoracle
uniona PSPACE-completeoracle.Unfortunatelythisis notthe casesinceit is provedin
[14] thatrelative to arandomoracleuniona PSPAC‘E-completeoracle,nokey agreement
protocol exists. And by [5] we know that the existenceof PIR implies the existenceof
oblivioustransferwhich by [17, 7] impliesthe existenceof key agreenmentTheseimpli-
cationhold relative to ary oraclebecausehey areprovedby black-boxreduction.Soif G
canbe constructedy usingarandomoracleuniona S PACE-completeoracle,we have
PIR protocolexistsrelative to a randomoracleuniona 2?5 PAC‘E-completeoracle,which
imlies the existenceof key agreemenprotocolin suchworld.

However, in the one-partysituation,valid inputsarehardto samplewithoutfirst query-
ing F sinceF is length-tripling. And G(x,F(i,m)) can be computedwithout actually
queryingG if i, m andx areknown, which is the caseif F is queriedfirst. Soary or-
aclePPTM with oracleaccesdo I' canbe “approximately” simulatedby anotheroracle
PPTMthatdoesnotqueryG. With aminor changeo only the statementbut not the proof,
of Theorem9.2 andTheoren9.3in [28], we canshav thatho OWPsrelativeto I'. Detalil
follows.

Assumefor contradictionthatthereis anoraclePPTM M’ computesa OWP on some
positive measured of oraclesin .23 By the LebesgueDensity Theorem thereexists an
oraclePPTMM, with afinite numberof oracleanswershardwired thatcomputesa OWP
on measurel — 6 of oraclesin ™ (for any constantd > 0 we choose).Let " denotethis
subsebdf oracleselativeto whichM computesa OWP. We construcfrom M anotheroracle
PPTMN thatdoesnot queryG but outputsdifferentlyfrom M only on a smallfraction of
inputs. Thento invertM, weinvertN instead.

Now considerinputsfrom {0, 1}" andsupposehatthe runningtime of M is bounded
by n¢, for someconstant > 2. TheoraclePPTMN simulatesM stepby step,keepstrack
of the queriesto F, e.g. alist of 2-tuples(i,m)’s, and replacesary queryto G, sayon
(xo,00), by the following. If |ao| < 3clogn, N checksevery (i,m) € {0,1}%l/3 to see
if ary of themsatisfiesF (i,m) = ao. This takesat most23¢1°9"/3 — 2¢. n time, which is
polynomialin n. If |ag| > 3clogn, N thencheckghelist (thehistoryof querieso F) to see
if ary (i,m) onwhich satifiesF (i, m) = ag. This againtakesat mostpolynomialtime since
the list is at mostpolynomially long. If the pair (ig, mp) suchthatF (i, mpg) = 0 canbe

found, by a brute-forceway or by serchingthelist mentionedabove, N replace<s(Xp, o)
by xo[io] ® T (S(Xo0),Mp). OtherwiseN assumegXp,0p) is aninvalid inputsandreplaces
3Suchad mustexist sincethereareonly countablymary oraclePPTMsbut uncountablymary oraclesin

I". Otherwisefor measureneof theoraclesin I' would have no machinecomputinga OWP. Herewe regard
I asasetof theoracles.
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G(xo,00) by 0.

For ary inputx € {0,1}", N(x) # M(x) only if M ever queriesG on somevalid (x,a)
andthat|a| > 3clognis notobtainedpreviously by queryingF . Thenfor ary fixedrandom
choiceof M, N(x) # M(x) for at mostnc2¢logn/23clogn — 1 /n¢ < 1/n? of oraclesin I', and
hencefor atmost1/((1—8)n?) < 2/n? of oraclesin I/, for 8 < 1/2.

Lemma 3.5. Theearelessthan2/n fractionof n-bit stringsy suc thatN—1(y) # M~(y)
for morethan2/n of oraclesin I"".

Proof. Considerthe Booleanmatrix A with rows indexedby y € {0,1}" andcolumnsin-
dexedy € I'', suchthat A,y = 1 iff N~1(y) # M~1(y) relative to y. For eachx € {0,1}",
N(x) # M(x) for atmost2/n? of oraclesn I/, andthis contritutesatmost2—"4/n? fraction
of 1'sto A. As thereare2" differentx’s, thetotal fractionof 1'sin Ais atmost4/n?. By the
pigeonholeprinciple, lessthan2/n of rowsin A have morethan2/n of columnsof 1's. [

For ary y, M—1(y) is uniquerelative to ary oraclein I'" sinceit is a permutation.So
by Lemma3.5, for lessthan2/n fraction of n-bit strings,N—*(y) is not uniquefor more
than2/n of oraclesin I'’. In otherwords, thereare morethan 1 — 2/n fraction of n-bit
stringsy suchthatN—2(y) is uniquefor morethan1 — 2/n of oraclesin I'’, andhencefor
morethanl—2/n—&> 1—¢ of oraclesin I', for ary constant > 6 andsuficiently large
n's. Basedon [21], Theorem9.3in [28] statesthat ? = AP implies the following: For
ary permutation on 1 — & randomoraclesandfor eachy, M—1(y) canbe computedon
1— /€ randomoraclesin polynomialtime. Obsenre that the proofsof Theorem9.2 and
9.3in [28] actuallyyield a strongerstatementhatuniqueN—1(y)’s canbe computed.We
have

Lemma 3.6. SupposeP = A P. Theris a constanfA sud thatfor everyoraclePPTMN,
there existsan oraclePPTMN’ with thefollowing property For anye < A andfor anyy, if
N~L(y) is uniquefor 1 — ¢ of randomoracles,thenN’(y) = N~1(y) for 1 — /¢ of random
oracles.

And we have the maintheoremby slightly modifying Theorem9.4in [28] asfollows.

Theorem 3.7. For measue one of the oraclesin I, relativeto which there is no oracle
PPTMthat computes one-waypermutation.

Proof. Choosed < A suchthatthereexistse with d < € < A ande+ /€ < 1. As oracles
in I containa PSPACE-completeproblem,relative to which we have P = A(P. Sofor
ary n, therearemorethan1— 2/n of n-bit stringy suchthatwe canfind N~1(y) = M—1(y)
for morethan1 — /¢ of oraclesin I". By the pigeionholeprinciple, thereare morethan
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1— /e of oracledn I for whichthereareinfinitely mary n wherewe cancomputev —(y)
for morethan1— 2/n— /¢ fraction of n-bit stringsy, violating the definition of one-vay
permutations.Thatis, M is one-way relative to lessthan /e < 1 —¢ < 1 — & fraction of
oraclesn I', acontradiction. O
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Appendix A: Detall Proofsof Lemma 3.3
and Lemma 3.4.

Recallthe probability events,
e B;:Cl makesoraclequeryto F orto T on (z,m) for somez € {0,1}*.

o By: Cl[ makesoraclequeriesto G on (x1,y) andon (x2,y), wherexy, xp,y € {0,1}*
suchthatx; # xp andS(x1) = S(x) € {0, 1},

We have for everymt € {0, 1}¥,

P [F(itom) - Byma ] =

IN

IN
~~ =
o
—
oY
+
[
~—
\
N
P

And

PriFim=B] = E[ Pr [F(iom) B

wherel” = M\ {F (ix, m)UT (x,m)} andlrEE [Pru,\, [uE= Bﬂ] meandhatwefix I (including
m

F(ix, m) and T (x,m)) first, and then later replaceF (ix,m) and T (x,m) in [ by u andv

respectrely whensamplingthem. ThistermmakessensédecausaevhetherB happensloes
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notdepend®nthevalueof F (i, m) noron T (x,m). WhetherB happen®r notdepend®n
theinputu andG(x, u), andnotethatG(x, u) is determinedy v.
And

rPrL[F(ik, m =By < 1/2%4+2/2%+...+(p(k) —1)/2¢

= p(K)(p(k) —1)/2¢



