The RT Algorithm (continued)

- Partition a day into \(n \) periods.
- Three states follow each state \((y_t, h_t^2)\) after a period.
- As the trinomial model combines, each state at date \(t \) is followed by \(2n + 1 \) states at date \(t + 1 \) (recall p. 682).
- These \(2n + 1 \) values must approximate the distribution of \((y_{t+1}, h_{t+1}^2)\).
- So the conditional moments (115)–(116) at date \(t + 1 \) on p. 880 must be matched by the trinomial model to guarantee convergence to the continuous-state model.
The RT Algorithm (continued)

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \overset{\Delta}{=} h_0$, though other multiples of h_0 are possible, and

$$\gamma_n \overset{\Delta}{=} \frac{\gamma}{\sqrt{n}}.$$
The RT Algorithm (continued)

- The jump size will be some integer multiple η of γ_n.
- We call η the jump parameter (see next page).
- Obviously, the magnitude of η grows with h_t.
- The middle branch does not change the underlying asset’s price.
The seven values on the right approximate the distribution of logarithmic price y_{t+1}.
The RT Algorithm (continued)

- The probabilities for the up, middle, and down branches are

\[p_u = \frac{h_t^2}{2\eta^2\gamma^2} + \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}, \quad (117) \]

\[p_m = 1 - \frac{h_t^2}{\eta^2\gamma^2}, \quad (118) \]

\[p_d = \frac{h_t^2}{2\eta^2\gamma^2} - \frac{r - (h_t^2/2)}{2\eta\gamma\sqrt{n}}. \quad (119) \]
The RT Algorithm (continued)

- It can be shown that:
 - The trinomial model takes on $2n + 1$ values at date $t + 1$ for y_{t+1}.
 - These values have a matching mean for y_{t+1}.
 - These values have an asymptotically matching variance for y_{t+1}.
- The central limit theorem guarantees convergence as n increases (if the probabilities are valid).
The RT Algorithm (continued)

- We can dispense with the intermediate nodes *between* dates to create a \((2n + 1)\)-nomial tree (p. 890).

- The resulting model is multinomial with \(2n + 1\) branches from any state \((y_t, h_t^2)\).

- There are two reasons behind this manipulation.
 - Interdate nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the interdate nodes results in a tree that can be \(n\) times larger.\(^a\)

\(^a\)Contrast it with the case on p. 383.
This heptanomial tree is the outcome of the trinomial tree on p. 886 after its intermediate nodes are removed.
The RT Algorithm (continued)

- A node with logarithmic price $y_t + \ell \eta \gamma_n$ at date $t + 1$ follows the current node at date t with price y_t, where

 $$-n \leq \ell \leq n.$$

- To reach that price in n periods, the number of up moves must exceed that of down moves by exactly ℓ.

- The probability that this happens is

 $$P(\ell) \triangleq \sum_{j_u, j_m, j_d} \frac{n!}{j_u! j_m! j_d!} p_u^{j_u} p_m^{j_m} p_d^{j_d},$$

 with $j_u, j_m, j_d \geq 0$, $n = j_u + j_m + j_d$, and $\ell = j_u - j_d$.

The RT Algorithm (continued)

• A particularly simple way to calculate the $P(\ell)$s starts by noting that

$$ (p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^{n} P(\ell) x^\ell. $$

(120)

- Convince yourself that this trick does the “accounting” correctly.

• So we expand $(p_u x + p_m + p_d x^{-1})^n$ and retrieve the probabilities by reading off the coefficients.

• It can be computed in $O(n^2)$ time, if not shorter.
The RT Algorithm (continued)

• The updating rule (113) on p. 877 must be modified to account for the adoption of the discrete-state model.

• The logarithmic price \(y_t + \ell \eta \gamma_n \) at date \(t + 1 \) following state \((y_t, h_t^2)\) is associated with this variance:

\[
h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon'_{t+1} - c)^2, \quad (121)
\]

Above,

\[
\epsilon'_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \ldots, \pm n,
\]

is a discrete random variable with \(2n + 1 \) values.
The RT Algorithm (continued)

• Different conditional variances h_t^2 may require different η so that the probabilities calculated by Eqs. (117)–(119) on p. 887 lie between 0 and 1.

• This implies varying jump sizes.

• The necessary requirement $p_m \geq 0$ implies $\eta \geq h_t/\gamma$.

• Hence we try

$$\eta = \lceil h_t/\gamma \rceil, \lceil h_t/\gamma \rceil + 1, \lceil h_t/\gamma \rceil + 2, \ldots$$

until valid probabilities are obtained or until their nonexistence is confirmed.
The RT Algorithm (continued)

- The sufficient and necessary condition for valid probabilities to exist is

\[
\frac{|r - (h_t^2/2)|}{2\eta\gamma \sqrt{n}} \leq \frac{h_t^2}{2\eta^2 \gamma^2} \leq \min \left(1 - \frac{|r - (h_t^2/2)|}{2\eta\gamma \sqrt{n}}, \frac{1}{2} \right).
\]

- The plot on p. 896 uses \(n = 1 \) to illustrate our points for a 3-day model.

- For example, node \((1,1)\) of date 1 and node \((2,3)\) of date 2 pick \(\eta = 2 \).

\(^{a}\text{C. N. Wu (R90723065) (2003); Lyuu & C. N. Wu (R90723065) (2003, 2005).}\)
The RT Algorithm (continued)

• The topology of the tree is not a standard combining multinomial tree.

• For example, a few nodes on p. 896 such as nodes \((2, 0)\) and \((2, -1)\) have *multiple* jump sizes.

• The reason is the path dependence of the model.

 – Two paths can reach node \((2, 0)\) from the root node, each with a different variance for the node.

 – One of the variances results in \(\eta = 1\).

 – The other results in \(\eta = 2\).
The RT Algorithm (concluded)

- The number of possible values of h_t^2 at a node can be exponential.
 - Because each path brings a different variance h_t^2.
- To address this problem, we record only the maximum and minimum h_t^2 at each node.\(^a\)
- Therefore, each node on the tree contains only two states (y_t, h_{max}^2) and (y_t, h_{min}^2).
- Each of (y_t, h_{max}^2) and (y_t, h_{min}^2) carries its own η and set of $2n + 1$ branching probabilities.

\(^a\)Cakici & Topyan (2000). But see p. 933 for a potential problem.
Negative Aspects of the Ritchken-Trevor Algorithma

- A small n may yield inaccurate option prices.
- But the tree will grow exponentially if n is large enough.
 - Specifically, $n > (1 - \beta_1)/\beta_2$ when $r = c = 0$.
- A large n has another serious problem: The tree cannot grow beyond a certain date.
- Thus the choice of n may be quite limited in practice.
- The RT algorithm can be modified to be free of shortened maturity and exponential complexity.b

aLyuu & C. N. Wu (R90723065) (2003, 2005).
bIts size is only $O(n^2)$ if $n \leq (\sqrt{(1 - \beta_1)/\beta_2} - c)^2$!
Numerical Examples

• Assume
 - $S_0 = 100$, $y_0 = \ln S_0 = 4.60517$.
 - $r = 0$.
 - $n = 1$.
 - $h_0^2 = 0.0001096$, $\gamma = h_0 = 0.010469$.
 - $\gamma_n = \gamma/\sqrt{n} = 0.010469$.
 - $\beta_0 = 0.000006575$, $\beta_1 = 0.9$, $\beta_2 = 0.04$, and $c = 0$.
Numerical Examples (continued)

- A daily variance of 0.0001096 corresponds to an annual volatility of
 \[
 \sqrt{365 \times 0.0001096} \approx 20\%.
 \]

- Let \(h^2(i, j) \) denote the variance at node \((i, j)\).

- Initially, \(h^2(0, 0) = h_0^2 = 0.0001096 \).
Numerical Examples (continued)

• Let $h_{\text{max}}^2(i, j)$ denote the maximum variance at node (i, j).

• Let $h_{\text{min}}^2(i, j)$ denote the minimum variance at node (i, j).

• Initially, $h_{\text{max}}^2(0, 0) = h_{\text{min}}^2(0, 0) = h_0^2$.

• The resulting three-day tree is depicted on p. 903.
• A top number inside a gray box refers to the minimum variance h_{min}^2 for the node.

• A bottom number inside a gray box refers to the maximum variance h_{max}^2 for the node.

• Variances are multiplied by 100,000 for readability.

• A top number inside a white box refers to the η corresponding to h_{min}^2.

• A bottom number inside a white box refers to the η corresponding to h_{max}^2.
Numerical Examples (continued)

- Let us see how the numbers are calculated.
- Start with the root node, node $(0, 0)$.
- Try $\eta = 1$ in Eqs. (117)–(119) on p. 887 first to obtain

 \[
 p_u = 0.4974,
 \]

 \[
 p_m = 0,
 \]

 \[
 p_d = 0.5026.
 \]

- As they are valid probabilities, the three branches from the root node use single jumps.
Numerical Examples (continued)

• Move on to node (1, 1).
• It has one predecessor node—node (0, 0)—and it takes an up move to reach the current node.
• So apply updating rule (121) on p. 893 with $\ell = 1$ and $h^2_t = h^2(0, 0)$.
• The result is $h^2(1, 1) = 0.000109645$.
Numerical Examples (continued)

• Because \(\lceil h(1, 1)/\gamma \rceil = 2 \), we try \(\eta = 2 \) in Eqs. (117)–(119) on p. 887 first to obtain

\[
\begin{align*}
p_u &= 0.1237, \\
p_m &= 0.7499, \\
p_d &= 0.1264.
\end{align*}
\]

• As they are valid probabilities, the three branches from node \((1, 1)\) use double jumps.
Numerical Examples (continued)

• Carry out similar calculations for node \((1, 0)\) with \(\ell = 0\) in updating rule (121) on p. 893.

• Carry out similar calculations for node \((1, -1)\) with \(\ell = -1\) in updating rule (121).

• Single jump \(\eta = 1\) works for both nodes.

• The resulting variances are

\[
h^2(1, 0) = 0.000105215,
\]

\[
h^2(1, -1) = 0.000109553.
\]
Numerical Examples (continued)

- Node $(2, 0)$ has 2 predecessor nodes, $(1, 0)$ and $(1, -1)$.
- Both have to be considered in deriving the variances.
- Let us start with node $(1, 0)$.
- Because it takes a middle move to reach the current node, we apply updating rule (121) on p. 893 with $\ell = 0$ and $h_t^2 = h^2(1, 0)$.
- The result is $h_{t+1}^2 = 0.000101269$.
Numerical Examples (continued)

• Now move on to the other predecessor node \((1, -1)\).

• Because it takes an up move to reach the current node, apply updating rule (121) on p. 893 with \(\ell = 1\) and

\[h_t^2 = h^2(1, -1). \]

• The result is \(h_{t+1}^2 = 0.000109603\).

• We hence record

\[h_{\min}^2(2, 0) = 0.000101269, \]
\[h_{\max}^2(2, 0) = 0.000109603. \]
Numerical Examples (continued)

• Consider state $h_{\text{max}}^2(2,0)$ first.

• Because $\lceil h_{\text{max}}(2,0)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (117)–(119) on p. 887 to obtain

\[
\begin{align*}
 p_u &= 0.1237, \\
 p_m &= 0.7500, \\
 p_d &= 0.1263.
\end{align*}
\]

• As they are valid probabilities, the three branches from node $(2,0)$ with the maximum variance use double jumps.
Numerical Examples (continued)

• Now consider state $h_{\text{min}}^2(2, 0)$.

• Because $\lceil h_{\text{min}}(2, 0)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (117)–(119) on p. 887 to obtain

\[
\begin{align*}
 p_u &= 0.4596, \\
 p_m &= 0.0760, \\
 p_d &= 0.4644.
\end{align*}
\]

• As they are valid probabilities, the three branches from node $(2, 0)$ with the minimum variance use single jumps.
Numerical Examples (continued)

- Node \((2, -1)\) has 3 predecessor nodes.
- Start with node \((1, 1)\).
- Because it takes one down move to reach the current node, we apply updating rule (121) on p. 893 with \(\ell = -1\) and \(h_t^2 = h^2(1, 1)\).\(^a\)
- The result is \(h_{t+1}^2 = 0.0001227\).

\(^a\)Note that it is not \(\ell = -2\).
Numerical Examples (continued)

• Now move on to predecessor node $(1, 0)$.

• Because it also takes a down move to reach the current node, we apply updating rule (121) on p. 893 with $\ell = -1$ and $h^2_t = h^2(1, 0)$.

• The result is $h^2_{t+1} = 0.000105609$.
Numerical Examples (continued)

- Finally, consider predecessor node \((1, -1)\).
- Because it takes a middle move to reach the current node, we apply updating rule (121) on p. 893 with \(\ell = 0\) and \(h_t^2 = h^2(1, -1)\).
- The result is \(h_{t+1}^2 = 0.000105173\).
- We hence record

\[
\begin{align*}
 h_{\min}^2(2, -1) &= 0.000105173, \\
 h_{\max}^2(2, -1) &= 0.0001227.
\end{align*}
\]
Numerical Examples (continued)

• Consider state $h_{\text{max}}^2(2, -1)$.

• Because $\lceil h_{\text{max}}(2, -1)/\gamma \rceil = 2$, we first try $\eta = 2$ in Eqs. (117)--(119) on p. 887 to obtain

\[
\begin{align*}
 p_u &= 0.1385, \\
 p_m &= 0.7201, \\
 p_d &= 0.1414.
\end{align*}
\]

• As they are valid probabilities, the three branches from node $(2, -1)$ with the maximum variance use double jumps.
Numerical Examples (continued)

• Next, consider state $h_{\text{min}}^2(2, -1)$.

• Because $\lceil h_{\text{min}}(2, -1)/\gamma \rceil = 1$, we first try $\eta = 1$ in Eqs. (117)-(119) on p. 887 to obtain

\[
\begin{align*}
 p_u &= 0.4773, \\
 p_m &= 0.0404, \\
 p_d &= 0.4823.
\end{align*}
\]

• As they are valid probabilities, the three branches from node $(2, -1)$ with the minimum variance use single jumps.
Numerical Examples (concluded)

- Other nodes at dates 2 and 3 can be handled similarly.
- In general, if a node has k predecessor nodes, then up to $2k$ variances will be calculated using the updating rule.
 - This is because each predecessor node keeps *two* variance numbers.
- But only the maximum and minimum variances will be kept.
Negative Aspects of the RT Algorithm Revisiteda

- Recall the problems mentioned on p. 899.
- In our case, combinatorial explosion occurs when

\[n > \frac{1 - \beta_1}{\beta_2} = \frac{1 - 0.9}{0.04} = 2.5 \]

(see the next plot).

- Suppose we are willing to accept the exponential running time and pick \(n = 100 \) to seek accuracy.

- But the problem of shortened maturity forces the tree to stop at date 9!

aLyuu & C. N. Wu (R90723065) (2003, 2005).
Dotted line: $n = 3$; dashed line: $n = 4$; solid line: $n = 5$.
Backward Induction on the RT Tree

- After the RT tree is constructed, it can be used to price options by backward induction.

- Recall that each node keeps two variances h_{max}^2 and h_{min}^2.

- We now increase that number to K equally spaced variances between h_{max}^2 and h_{min}^2 at each node.

- Besides the minimum and maximum variances, the other $K - 2$ variances in between are linearly interpolated.\(^a\)

\(^a\)In practice, log-linear interpolation works better (Lyuu & C. N. Wu (R90723065), 2005). Log-cubic interpolation works even better (C. Liu (R92922123), 2005).
Backward Induction on the RT Tree (continued)

• For example, if $K = 3$, then a variance of

$$10.5436 \times 10^{-6}$$

will be added between the maximum and minimum variances at node $(2, 0)$ on p. 903.\(^a\)

• In general, the kth variance at node (i, j) is

$$h^2_{\min}(i, j) + k \frac{h^2_{\max}(i, j) - h^2_{\min}(i, j)}{K - 1}, \quad k = 0, 1, \ldots, K - 1.$$

• Each interpolated variance’s jump parameter and branching probabilities can be computed as before.

\(^a\)Repeated on p. 923.
Backward Induction on the RT Tree (concluded)

- Suppose a variance falls between two of the K variances during backward induction.
- Linear interpolation of the option prices corresponding to the two bracketing variances will be used as the approximate option price.
- The above ideas are reminiscent of the ones on p. 409, where we dealt with Asian options.
Numerical Examples

- We next use the tree on p. 923 to price a European call option with a strike price of 100 and expiring at date 3.
- Recall that the riskless interest rate is zero.
- Assume $K = 2$; hence there are no interpolated variances.
- The pricing tree is shown on p. 926 with a call price of 0.66346.
 - The branching probabilities needed in backward induction can be found on p. 927.
Numerical Examples (continued)

- Let us derive some of the numbers on p. 926.
- A gray line means the updated variance falls strictly between h_{max}^2 and h_{min}^2.
- The option price for a terminal node at date 3 equals $\max(S_3 - 100, 0)$, independent of the variance level.
- Now move on to nodes at date 2.
- The option price at node $(2, 3)$ depends on those at nodes $(3, 5)$, $(3, 3)$, and $(3, 1)$.
- It therefore equals

$$0.1387 \times 5.37392 + 0.7197 \times 3.19054 + 0.1416 \times 1.05240 = 3.19054.$$
Numerical Examples (continued)

- Option prices for other nodes at date 2 can be computed similarly.
- For node \((1, 1)\), the option price for both variances is
 \[
 0.1237 \times 3.19054 + 0.7499 \times 1.05240 + 0.1264 \times 0.14573 = 1.20241.
 \]
- Node \((1, 0)\) is most interesting.
- We knew that a down move from it gives a variance of \(0.000105609\).
- This number falls between the minimum variance \(0.000105173\) and the maximum variance \(0.0001227\) at node \((2, -1)\) on p. 923.
Numerical Examples (continued)

- The option price corresponding to the minimum variance is 0 (p. 927).
- The option price corresponding to the maximum variance is 0.14573.
- The equation
 \[x \times 0.000105173 + (1 - x) \times 0.0001227 = 0.000105609 \]
 is satisfied by \(x = 0.9751 \).
- So the option for the down state is approximated by
 \[x \times 0 + (1 - x) \times 0.14573 = 0.00362. \]
Numerical Examples (continued)

- The up move leads to the state with option price 1.05240.
- The middle move leads to the state with option price 0.48366.
- The option price at node (1, 0) is finally calculated as

$$0.4775 \times 1.05240 + 0.0400 \times 0.48366 + 0.4825 \times 0.00362 = 0.52360.$$
Numerical Examples (continued)

- A variance following an interpolated variance may exceed the maximum variance or be exceeded by the minimum variance.

- When this happens, the option price corresponding to the maximum or minimum variance will be used during backward induction.\(^a\)

\(^a\)Cakici & Topyan (2000).
Numerical Examples (concluded)

- But an interpolated variance may choose a branch that goes into a node that is *not* reached in forward induction.\(^a\)

- In this case, the algorithm fails.

- The RT algorithm does not have this problem as all interpolated variances are involved in the forward-induction phase.

- It may be hard to calculate the implied \(\beta_1\) and \(\beta_2\) from option prices.\(^b\)

\(^a\)Lyuu & C. N. Wu (R90723065) (2005).

\(^b\)Y. Chang (R93922034) (2006).
Complexities of GARCH Modelsa

- The RT algorithm explodes exponentially if n is big enough (p. 899).

- The mean-tracking tree of Lyuu and Wu (2005) makes sure explosion does not happen if n is not too large.b

- The next page summarizes the situations for many GARCH option pricing models.
 - Our earlier treatment is for NGARCH only.

aLyuu & C. N. Wu (R90723065) (2003, 2005).
bSimilar to, but earlier than, the binomial-trinomial tree on pp. 703ff.
Complexities of GARCH Models (concluded)a

<table>
<thead>
<tr>
<th>Model</th>
<th>Explosion</th>
<th>Non-explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGARCH</td>
<td>$\beta_1 + \beta_2 n > 1$</td>
<td>$\beta_1 + \beta_2 (\sqrt{n} + \lambda + c)^2 \leq 1$</td>
</tr>
<tr>
<td>LGARCH</td>
<td>$\beta_1 + \beta_2 n > 1$</td>
<td>$\beta_1 + \beta_2 (\sqrt{n} + \lambda)^2 \leq 1$</td>
</tr>
<tr>
<td>AGARCH</td>
<td>$\beta_1 + \beta_2 n > 1$</td>
<td>$\beta_1 + \beta_2 (\sqrt{n} + \lambda)^2 \leq 1$</td>
</tr>
<tr>
<td>GJR-GARCH</td>
<td>$\beta_1 + \beta_2 n > 1$</td>
<td>$\beta_1 + (\beta_2 + \beta_3)(\sqrt{n} + \lambda)^2 \leq 1$</td>
</tr>
<tr>
<td>TS-GARCH</td>
<td>$\beta_1 + \beta_2 \sqrt{n} > 1$</td>
<td>$\beta_1 + \beta_2 (\lambda + \sqrt{n}) \leq 1$</td>
</tr>
<tr>
<td>TGARCH</td>
<td>$\beta_1 + \beta_2 \sqrt{n} > 1$</td>
<td>$\beta_1 + (\beta_2 + \beta_3)(\lambda + \sqrt{n}) \leq 1$</td>
</tr>
<tr>
<td>Heston-Nandi</td>
<td>$\beta_1 + \beta_2 (c - \frac{1}{2})^2 > 1$ & $\beta_1 + \beta_2 c^2 \leq 1$ & $c \leq \frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td>VGARCH</td>
<td>$\beta_1 + (\beta_2/4) > 1$</td>
<td>$\beta_1 \leq 1$</td>
</tr>
</tbody>
</table>

aY. Chen (R95723051) (2008); Y. Chen (R95723051), Lyuu, & Wen (D94922003) (2012).
Introduction to Term Structure Modeling
The fox often ran to the hole by which they had come in, to find out if his body was still thin enough to slip through it.

— *Grimm’s Fairy Tales*
And the worst thing you can have is models and spreadsheets.
Outline

• Use the binomial interest rate tree to model stochastic term structure.
 – Illustrates the basic ideas underlying future models.
 – Applications are generic in that pricing and hedging methodologies can be easily adapted to other models.

• Although the idea is similar to the earlier one used in option pricing, the current task is more complicated.
 – The evolution of an entire term structure, not just a single stock price, is to be modeled.
 – Interest rates of various maturities cannot evolve arbitrarily, or arbitrage profits may occur.
Issues

- A stochastic interest rate model performs two tasks.
 - Provides a stochastic process that defines future term structures without arbitrage profits.
 - “Consistent” with the observed term structures.
History

- The methodology was founded by Merton (1970).
- Modern interest rate modeling is often traced to 1977 when Vasicek and Cox, Ingersoll, and Ross developed simultaneously their influential models.
- Early models have fitting problems because they may not price today’s benchmark bonds correctly.
- An alternative approach pioneered by Ho and Lee (1986) makes fitting the market yield curve mandatory.
- Models based on such a paradigm are called (somewhat misleadingly) arbitrage-free or no-arbitrage models.
Binomial Interest Rate Tree

• Goal is to construct a no-arbitrage interest rate tree consistent with the yields and/or yield volatilities of zero-coupon bonds of all maturities.
 – This procedure is called calibration.a

• Pick a binomial tree model in which the logarithm of the future short rate obeys the binomial distribution.
 – Exactly like the CRR tree.

• The limiting distribution of the short rate at any future time is hence lognormal.

aDerman (2004), “complexity without calibration is pointless.”
Binomial Interest Rate Tree (continued)

- A binomial tree of future short rates is constructed.
- Every short rate is followed by two short rates in the following period (p. 944).
- In the figure on p. 944, node A coincides with the start of period j during which the short rate r is in effect.
- At the conclusion of period j, a new short rate goes into effect for period $j + 1$.
\begin{align*}
&\text{period } j - 1 \quad \text{period } j \quad \text{period } j + 1 \\
&\text{time } j - 1 \quad \text{time } j
\end{align*}
Binomial Interest Rate Tree (continued)

- This may take one of two possible values:
 - r_ℓ: the “low” short-rate outcome at node B.
 - r_h: the “high” short-rate outcome at node C.

- Each branch has a 50% chance of occurring in a risk-neutral economy.

- We require that the paths combine as the binomial process unfolds.

- This model can be traced to Salomon Brothers.\(^a\)

\(^a\)Tuckman (2002).
Binomial Interest Rate Tree (continued)

• The short rate r can go to r_h and r_ℓ with equal risk-neutral probability $1/2$ in a period of length Δt.

• Hence the volatility of $\ln r$ after Δt time is

$$\sigma = \frac{1}{2} \frac{1}{\sqrt{\Delta t}} \ln \left(\frac{r_h}{r_\ell} \right)$$ (122)

(see Exercise 23.2.3 in text).

• Above, σ is annualized, whereas r_ℓ and r_h are period based.
Binomial Interest Rate Tree (continued)

• Note that
 \[\frac{r_h}{r_\ell} = e^{2\sigma \sqrt{\Delta t}}. \]

• Thus greater volatility, hence uncertainty, leads to larger \(r_h/r_\ell \) and wider ranges of possible short rates.

• The ratio \(r_h/r_\ell \) may depend on time if the volatility is a function of time.

• Note that \(r_h/r_\ell \) has nothing to do with the current short rate \(r \) if \(\sigma \) is independent of \(r \).
Binomial Interest Rate Tree (continued)

• In general there are j possible rates\(^a\) for period j,

$$r_j, r_j v_j, r_j v_j^2, \ldots, r_j v_j^{j-1},$$

where

$$v_j \triangleq e^{2\sigma_j \sqrt{\Delta t}} \tag{123}$$

is the multiplicative ratio for the rates in period j (see figure on next page).

• We shall call r_j the baseline rates.

• The subscript j in σ_j above is meant to emphasize that the short rate volatility may be time dependent.

\(^a\)Not $j + 1$.
Binomial Interest Rate Tree (concluded)

• In the limit, the short rate follows

\[r(t) = \mu(t) e^{\sigma(t) W(t)}. \] (124)

 – The (percent) short rate volatility \(\sigma(t) \) is a deterministic function of time.

• The expected value of \(r(t) \) equals \(\mu(t) e^{\sigma(t)^2 (t/2)}. \)

• Hence a declining short rate volatility is usually imposed to preclude the short rate from assuming implausibly high values.

• Incidentally, this is how the binomial interest rate tree achieves mean reversion to some long-term mean.
Memory Issues

• Path independency: The term structure at any node is independent of the path taken to reach it.

• So only the baseline rates r_i and the multiplicative ratios v_i need to be stored in computer memory.

• This takes up only $O(n)$ space.\(^a\)

• Storing the whole tree would take up $O(n^2)$ space.

 – Daily interest rate movements for 30 years require roughly $(30 \times 365)^2/2 \approx 6 \times 10^7$ double-precision floating-point numbers (half a gigabyte!).

\(^a\)Throughout, n denotes the depth of the tree.
Set Things in Motion

- The abstract process is now in place.
- We need the annualized rates of return of the riskless bonds that make up the benchmark yield curve and their volatilities.
- In the U.S., for example, the on-the-run yield curve obtained by the most recently issued Treasury securities may be used as the benchmark curve.
Set Things in Motion (concluded)

- The term structure of (yield) volatilities\(^a\) can be estimated from:
 - Historical data (historical volatility).
 - Or interest rate option prices such as cap prices (implied volatility).

- The binomial tree should be found that is consistent with both term structures.

- Here we focus on the term structure of interest rates.

\(^a\)Or simply the volatility (term) structure.
Model Term Structures

- The model price is computed by backward induction.
- Refer back to the figure on p. 944.
- Given that the values at nodes B and C are P_B and P_C, respectively, the value at node A is then

$$\frac{P_B + P_C}{2(1 + r)} + \text{cash flow at node A}.$$

- We compute the values column by column without explicitly expanding the binomial interest rate tree (see next page).
- This takes $O(n^2)$ time and $O(n)$ space.
Cash flows:
Term Structure Dynamics

• An \(n \)-period zero-coupon bond’s price can be computed by assigning $1 to every node at period \(n \) and then applying backward induction.

• Repeating this step for \(n = 1, 2, \ldots \), one obtains the market discount function implied by the tree.

• The tree therefore determines a term structure.

• It also contains a term structure dynamics.
 – Taking any node in the tree as the current state induces a binomial interest rate tree and, again, a term structure.