Suppose the (instantaneous) volatility can change over time but otherwise predictable: $\sigma(t)$ instead of σ.

In the limit, the variance of $\ln(S_\tau/S)$ is

$$\int_0^\tau \sigma^2(t) \, dt$$

rather than $\sigma^2 \tau$.

The annualized volatility to be used in the Black-Scholes formula should now be

$$\sqrt{\frac{\int_0^\tau \sigma^2(t) \, dt}{\tau}}.$$

\(^{a}\)Merton (1973).
Time-Dependent Instantaneous Volatility (concluded)

- There is no guarantee that the implied volatility is constant.

- For the binomial model, u and d depend on time:
 \[
 u = e^{\sigma(t)\sqrt{\tau/n}}, \\
 d = e^{-\sigma(t)\sqrt{\tau/n}}.
 \]
Time-Dependent Short Rates

- Suppose the short rate (i.e., the one-period spot rate) changes over time but otherwise predictable.
- The riskless rate r in the Black-Scholes formula should be the spot rate with a time to maturity equal to τ.
- In other words,

$$ r = \frac{\sum_{i=0}^{n-1} r_i}{\tau}, $$

where r_i is the continuously compounded, short rate measured in periods for period i.
Trading Days and Calendar Days

• Interest accrues based on the calendar day.

• But σ is usually calculated based on trading days only.
 – Stock price seems to have lower volatilities when the exchange is closed.a

• How to harmonize these two different times into the Black-Scholes formula and binomial tree algorithms?b

aFama (1965); French (1980); French and Roll (1986).
bRecall p. 145 about dating issues.
Trading Days and Calendar Days (continued)

- Think of σ as measuring the *annualized* volatility of stock price *one year from now*.

- Suppose a year has m (say 253) trading days.

- We can replace σ in the Black-Scholes formula witha

$$\sigma \sqrt{\frac{365}{m} \times \frac{\text{number of trading days to expiration}}{\text{number of calendar days to expiration}}}.$$a

aFrench (1984).
Trading Days and Calendar Days (concluded)

• This works only for European options.

• How about binomial tree algorithms?

\[\text{Contributed by Mr. Lu, Zheng-Liang (D00922011) in 2015.}\]
Options on a Stock That Pays Dividends

• Early exercise must be considered.

• Proportional dividend payout model is tractable (see text).
 – The dividend amount is a constant proportion of the prevailing stock price.

• In general, the corporate dividend policy is a complex issue.
Known Dividends

- Constant dividends introduce complications.
- Use D to denote the amount of the dividend.
- Suppose an ex-dividend date falls in the first period.
- At the end of that period, the possible stock prices are $Su - D$ and $Sd - D$.
- Follow the stock price one more period.
- The number of possible stock prices is not three but four: $(Su - D)u$, $(Su - D)d$, $(Sd - D)u$, $(Sd - D)d$.
 - The binomial tree no longer combines.
\[(Su - D)u\]
\[(Su - D)d\]
\[Su - D\]
\[S\]
\[(Sd - D)u\]
\[(Sd - D)d\]
\[Sd - D\]
An Ad-Hoc Approximation

- Use the Black-Scholes formula with the stock price reduced by the PV of the dividends.\(^a\)

- This essentially decomposes the stock price into a riskless one paying known dividends and a risky one.

- The riskless component at any time is the PV of future dividends during the life of the option.
 - Then, \(\sigma\) is the volatility of the process followed by the \textit{risky} component.

- The stock price, between two adjacent ex-dividend dates, follows the same lognormal distribution.

\(^a\)Roll (1977).
An Ad-Hoc Approximation (concluded)

• Start with the current stock price minus the PV of future dividends before expiration.

• Develop the binomial tree for the new stock price as if there were no dividends.

• Then add to each stock price on the tree the PV of all future dividends before expiration.

• American option prices can be computed as before on this tree of stock prices.
The Ad-Hoc Approximation vs. P. 298 (Step 1)

\[S - \frac{D}{R} \]

\[(S - \frac{D}{R})u^2 \]

\[(S - \frac{D}{R})u \]

\[(S - \frac{D}{R})ud \]

\[(S - \frac{D}{R})d \]

\[(S - \frac{D}{R})d^2 \]
The Ad-Hoc Approximation vs. P. 298 (Step 2)

\[
\begin{align*}
(S - D/R)u^2 \\
(S - D/R)u \\
(S - D/R) + D/R &= S \\
(S - D/R)ud \\
(S - D/R)d \\
(S - D/R)d^2
\end{align*}
\]
The Ad-Hoc Approximation vs. P. 298

- The trees are different.

- The stock prices at maturity are also different.
 - \((Su - D)u, (Su - D)d, (Sd - D)u, (Sd - D)d\) (p. 298).
 - \((S - D/R)u^2, (S - D/R)ud, (S - D/R)d^2\) (ad hoc).

- Note that, as \(d < R < u\),
 \[
 (Su - D)u > (S - D/R)u^2, \\
 (Sd - D)d < (S - D/R)d^2,
 \]

Contributed by Mr. Yang, Jui-Chung (D97723002) on March 18, 2009.
The Ad-Hoc Approximation vs. P. 298 (concluded)

- So the ad hoc approximation has a smaller dynamic range.

- This explains why in practice the volatility is usually increased when using the ad hoc approximation.
A General Approacha

- A new tree structure.
- No approximation assumptions are made.
- A mathematical proof that the tree can always be constructed.
- The actual performance is quadratic except in pathological cases (see pp. 689ff).
- Other approaches include adjusting σ and approximating the known dividend with a dividend yield.

aDai (R86526008, D8852600) and Lyuu (2004).
Continuous Dividend Yields

- Dividends are paid continuously.
 - Approximates a broad-based stock market portfolio.

- The payment of a continuous dividend yield at rate q reduces the growth rate of the stock price by q.
 - A stock that grows from S to S_{τ} with a continuous dividend yield of q would grow from S to $S_{\tau}e^{q\tau}$ without the dividends.

- A European option has the same value as one on a stock with price $Se^{-q\tau}$ that pays no dividends.\(^a\)

\(^a\)In pricing European options, we care only about the distribution of S_{τ}.

©2015 Prof. Yuh-Dauh Lyuu, National Taiwan University
Continuous Dividend Yields (continued)

- The Black-Scholes formulas hold with S replaced by $Se^{-q\tau}$.\(^a\)

\[
C = Se^{-q\tau} N(x) - X e^{-r\tau} N(x - \sigma\sqrt{\tau}),
\]

\[
P = X e^{-r\tau} N(-x + \sigma\sqrt{\tau}) - Se^{-q\tau} N(-x),
\]

where \(x \equiv \ln(S/X) + (r - q + \sigma^2/2) \tau\).

- Formulas (29) and (29') remain valid as long as the dividend yield is predictable.

\(^{a}\text{Merton (1973).}\)
Continuous Dividend Yields (continued)

- To run binomial tree algorithms, replace u with $ue^{-q\Delta t}$ and d with $de^{-q\Delta t}$, where $\Delta t \equiv \tau/n$.
 - The reason: The stock price grows at an expected rate of $r - q$ in a risk-neutral economy.

- Other than the changes, binomial tree algorithms stay the same.
 - In particular, p should use the original u and d!\(^a\)

\(^a\)Contributed by Ms. Wang, Chuan-Ju (F95922018) on May 2, 2007.
Continuous Dividend Yields (concluded)

• Alternatively, pick the risk-neutral probability as

\[\frac{e^{(r-q)\Delta t} - d}{u - d}, \]

(30)

where \(\Delta t \equiv \tau/n. \)

– The reason: The stock price grows at an expected rate of \(r - q \) in a risk-neutral economy.

• The \(u \) and \(d \) remain unchanged.

• Other than the change in Eq. (30), binomial tree algorithms stay the same as if there were no dividends.
Curtailing the Range of Tree Nodesa

- Those nodes can be skipped if they are extremely unlikely to be reached.

- The probability that the price will move more than a certain number of standard deviations from its initial value is negligible.

- Similarly, suppose the stock price at maturity is known.

- The probability that the price will move outside that number of standard deviations in working backward is also negligible.

aAndricopoulos, Widdicks, Duck, Newton (2004).
Curtailing the Range of Tree Nodes (continued)

• In summary, for certain stock prices, the strike price is so low or so high that it could not realistically be reached.

• For these prices the option value is basically deterministic.

• By working only within the said range of stock prices, we can save time without significant loss of accuracy.
Curtailing the Range of Tree Nodes (concluded)

• For time t, where $0 < t < T$, the maximum and minimum stock prices $S_{\text{max}}(t)$ and $S_{\text{min}}(t)$ are:

\[
S_{\text{max}}(t) = \min \left(S_0 e^{rt+\eta\sigma\sqrt{t}}, X e^{-r(T-t)+\eta\sigma\sqrt{T-t}} \right),
\]

\[
S_{\text{min}}(t) = \max \left(S_0 e^{rt-\eta\sigma\sqrt{t}}, X e^{-r(T-t)-\eta\sigma\sqrt{T-t}} \right).
\]
Sensitivity Analysis of Options
Cleopatra’s nose, had it been shorter, the whole face of the world would have been changed.

— Blaise Pascal (1623–1662)
Sensitivity Measures ("The Greeks")

- How the value of a security changes relative to changes in a given parameter is key to hedging.
 - Duration, for instance.

- Let \(x \equiv \frac{\ln(S/X) + (r + \sigma^2/2) \tau}{\sigma \sqrt{\tau}} \) (recall p. 280).

- Recall that
 \[
 N'(y) = \frac{e^{-y^2/2}}{\sqrt{2\pi}} > 0,
 \]
 the density function of standard normal distribution.
Delta

• Defined as
 \[\Delta \equiv \frac{\partial f}{\partial S}. \]
 – \(f \) is the price of the derivative.
 – \(S \) is the price of the underlying asset.

• The delta of a portfolio of derivatives on the same underlying asset is the sum of their individual deltas.
 – Elementary calculus.

• The delta used in the BOPM (p. 226) is the discrete analog.
Delta (concluded)

- The delta of a European call on a non-dividend-paying stock equals
 \[
 \frac{\partial C}{\partial S} = N(x) > 0.
 \]
- The delta of a European put equals
 \[
 \frac{\partial P}{\partial S} = N(x) - 1 < 0.
 \]
- The delta of a long stock is apparently 1.
Solid curves: at-the-money options.
Dashed curves: out-of-the-money calls or in-the-money puts.
Delta Neutrality

• A position with a total delta equal to 0 is delta-neutral.
 – A delta-neutral portfolio is immune to small price changes in the underlying asset.

• Creating one serves for hedging purposes.
 – A portfolio consisting of a call and $-\Delta$ shares of stock is delta-neutral.
 – Short Δ shares of stock to hedge a long call.
 – Long Δ shares of stock to hedge a short call.

• In general, hedge a position in a security with delta Δ_1 by shorting Δ_1/Δ_2 units of a security with delta Δ_2.
Theta (Time Decay)

• Defined as the rate of change of a security’s value with respect to time, or $\Theta \equiv -\frac{\partial f}{\partial \tau} = \frac{\partial f}{\partial t}$.

• For a European call on a non-dividend-paying stock,

$$\Theta = -\frac{SN'(x) \sigma}{2\sqrt{\tau}} - rXe^{-r\tau} N(x - \sigma \sqrt{\tau}) < 0.$$
– The call loses value with the passage of time.

• For a European put,

$$\Theta = -\frac{SN'(x) \sigma}{2\sqrt{\tau}} + rXe^{-r\tau} N(-x + \sigma \sqrt{\tau}).$$
– Can be negative or positive.
Dotted curve: in-the-money call or out-of-the-money put.
Solid curves: at-the-money options.
Dashed curve: out-of-the-money call or in-the-money put.
Gamma

- Defined as the rate of change of its delta with respect to the price of the underlying asset, or $\Gamma \equiv \partial^2 \Pi / \partial S^2$.
- Measures how sensitive delta is to changes in the price of the underlying asset.
- In practice, a portfolio with a high gamma needs to be rebalanced more often to maintain delta neutrality.
- Roughly, delta \sim duration, and gamma \sim convexity.
- The gamma of a European call or put on a non-dividend-paying stock is

$$N'(x)/(S\sigma\sqrt{\tau}) > 0.$$
Vegaa (Lambda, Kappa, Sigma)

• Defined as the rate of change of its value with respect to the volatility of the underlying asset

\[\Lambda \equiv \frac{\partial f}{\partial \sigma}. \]

• Volatility often changes over time.

• A security with a high vega is very sensitive to small changes or estimation error in volatility.

• The vega of a European call or put on a non-dividend-paying stock is \(S \sqrt{\tau} N'(x) > 0. \)

 – So higher volatility always increases the option value.

aVega is not Greek.
Vega (concluded)

• Note that if $S \neq X$, $\tau \to 0$ implies

$$\Lambda \to 0$$

(which answers the question on p. 284 for the Black-Scholes model).

• The Black-Scholes formula (p. 280) implies

$$C \to S,$$

$$P \to X e^{-r\tau},$$

as $\sigma \to \infty$.

• These boundary conditions may be handy for certain numerical methods.
Dotted curve: in-the-money call or out-of-the-money put.
Solid curves: at-the-money option.
Dashed curve: out-of-the-money call or in-the-money put.
Rho

- Defined as the rate of change in its value with respect to interest rates
 \[\rho \equiv \frac{\partial f}{\partial r}. \]
- The rho of a European call on a non-dividend-paying stock is
 \[X\tau e^{-r\tau} N(x - \sigma \sqrt{\tau}) > 0. \]
- The rho of a European put on a non-dividend-paying stock is
 \[-X\tau e^{-r\tau} N(-x + \sigma \sqrt{\tau}) < 0. \]
Dotted curves: in-the-money call or out-of-the-money put.
Solid curves: at-the-money option.
Dashed curves: out-of-the-money call or in-the-money put.
Numerical Greeks

- Needed when closed-form formulas do not exist.
- Take delta as an example.
- A standard method computes the finite difference,
 \[\frac{f(S + \Delta S) - f(S - \Delta S)}{2\Delta S} \]
- The computation time roughly doubles that for evaluating the derivative security itself.
An Alternative Numerical Delta

- Use intermediate results of the binomial tree algorithm.
- When the algorithm reaches the end of the first period, f_u and f_d are computed.
- These values correspond to derivative values at stock prices S_u and S_d, respectively.
- Delta is approximated by $\frac{f_u - f_d}{S_u - S_d}$.
- Almost zero extra computational effort.

\footnote{Pelsser and Vorst (1994).}
Numerical Gamma

- At the stock price \((S_{uu} + S_{ud})/2\), delta is approximately \((f_{uu} - f_{ud})/(S_{uu} - S_{ud})\).

- At the stock price \((S_{ud} + S_{dd})/2\), delta is approximately \((f_{ud} - f_{dd})/(S_{ud} - S_{dd})\).

- Gamma is the rate of change in deltas between \((S_{uu} + S_{ud})/2\) and \((S_{ud} + S_{dd})/2\), that is,

\[
\frac{f_{uu} - f_{ud}}{S_{uu} - S_{ud}} - \frac{f_{ud} - f_{dd}}{S_{ud} - S_{dd}} \frac{(S_{uu} - S_{dd})/2}{(S_{uu} - S_{dd})/2}.
\]

- Alternative formulas exist (p. 586).
Finite Difference Fails for Numerical Gamma

• Numerical differentiation gives
\[\frac{f(S + \Delta S) - 2f(S) + f(S - \Delta S)}{(\Delta S)^2}. \]

• It does not work (see text).

• But why did the binomial tree version work?
Other Numerical Greeks

• The theta can be computed as
 \[\frac{f_{ud} - f}{2(\tau/n)} \, . \]

 – In fact, the theta of a European option can be derived from delta and gamma (p. 585).

• For vega and rho, there seems no alternative but to run the binomial tree algorithm twice.\(^a\)

\(^a\)But see pp. 946ff.
Extensions of Options Theory
As I never learnt mathematics, so I have had to think.
— Joan Robinson (1903–1983)
Pricing Corporate Securities\(^a\)

- Interpret the underlying asset as the total value of the firm.
- The option pricing methodology can be applied to pricing corporate securities.
 - The result is called the structural model.
- Assumptions:
 - A firm can finance payouts by the sale of assets.
 - If a promised payment to an obligation other than stock is missed, the claim holders take ownership of the firm and the stockholders get nothing.

\(^a\)Black and Scholes (1973).
Risky Zero-Coupon Bonds and Stock

• Consider XYZ.com.

• Capital structure:
 – n shares of its own common stock, S.
 – Zero-coupon bonds with an aggregate par value of X.

• What is the value of the bonds, B?

• What is the value of the XYZ.com stock?
Risky Zero-Coupon Bonds and Stock (continued)

- On the bonds’ maturity date, suppose the total value of the firm V^* is less than the bondholders’ claim X.
- Then the firm declares bankruptcy, and the stock becomes worthless.
- If $V^* > X$, then the bondholders obtain X and the stockholders $V^* - X$.

<table>
<thead>
<tr>
<th></th>
<th>$V^* \leq X$</th>
<th>$V^* > X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds</td>
<td>V^*</td>
<td>X</td>
</tr>
<tr>
<td>Stock</td>
<td>0</td>
<td>$V^* - X$</td>
</tr>
</tbody>
</table>
Risky Zero-Coupon Bonds and Stock (continued)

- The stock has the same payoff as a call!
- It is a call on the total value of the firm with a strike price of X and an expiration date equal to the bonds’.
 - This call provides the limited liability for the stockholders.
- The bonds are a covered call on the total value of the firm.
- Let V stand for the total value of the firm.
- Let C stand for a call on V.
Risky Zero-Coupon Bonds and Stock (continued)

• Thus

\[nS = C, \]
\[B = V - C. \]

• Knowing \(C \) amounts to knowing how the value of the firm is divided between stockholders and bondholders.

• Whatever the value of \(C \), the total value of the stock and bonds at maturity remains \(V^* \).

• The relative size of debt and equity is irrelevant to the firm’s current value \(V \).
Risky Zero-Coupon Bonds and Stock (continued)

- From Theorem 11 (p. 280) and the put-call parity,

\[nS = VN(x) - Xe^{-r\tau}N(x - \sigma\sqrt{\tau}), \]
\[B = VN(-x) + Xe^{-r\tau}N(x - \sigma\sqrt{\tau}). \]

- Above,

\[x \equiv \frac{\ln(V/X) + (r + \sigma^2/2)\tau}{\sigma\sqrt{\tau}}. \]

- The continuously compounded yield to maturity of the firm’s bond is

\[\frac{\ln(X/B)}{\tau}. \]
Risky Zero-Coupon Bonds and Stock (concluded)

- Define the credit spread or default premium as the yield difference between risky and riskless bonds,

\[
\frac{\ln(X/B)}{\tau} - r
\]

\[
= -\frac{1}{\tau} \ln \left(N(-z) + \frac{1}{\omega} N(z - \sigma \sqrt{\tau}) \right).
\]

- \(\omega \equiv X e^{-r \tau} / V. \)

- \(z \equiv (\ln \omega)/(\sigma \sqrt{\tau}) + (1/2) \sigma \sqrt{\tau} = -x + \sigma \sqrt{\tau}. \)

- Note that \(\omega \) is the debt-to-total-value ratio.
A Numerical Example

- XYZ.com’s assets consist of 1,000 shares of Merck as of March 20, 1995.
 - Merck’s market value per share is $44.5.

- XYZ.com’s securities consist of 1,000 shares of common stock and 30 zero-coupon bonds maturing on July 21, 1995.

- Each bond promises to pay $1,000 at maturity.

- $n = 1,000$, $V = 44.5 \times n = 44,500$, and $X = 30 \times 1,000 = 30,000$.
<table>
<thead>
<tr>
<th>Option</th>
<th>Strike</th>
<th>Exp.</th>
<th>Vol.</th>
<th>Last</th>
<th>Vol.</th>
<th>Last</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merck</td>
<td>30</td>
<td>Jul</td>
<td>328</td>
<td>151/4</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>441/2</td>
<td>35</td>
<td>Jul</td>
<td>150</td>
<td>91/2</td>
<td>10</td>
<td>1/16</td>
</tr>
<tr>
<td>441/2</td>
<td>40</td>
<td>Apr</td>
<td>887</td>
<td>43/4</td>
<td>136</td>
<td>1/16</td>
</tr>
<tr>
<td>441/2</td>
<td>40</td>
<td>Jul</td>
<td>220</td>
<td>51/2</td>
<td>297</td>
<td>1/4</td>
</tr>
<tr>
<td>441/2</td>
<td>40</td>
<td>Oct</td>
<td>58</td>
<td>6</td>
<td>10</td>
<td>1/2</td>
</tr>
<tr>
<td>441/2</td>
<td>45</td>
<td>Apr</td>
<td>3050</td>
<td>7/8</td>
<td>100</td>
<td>11/8</td>
</tr>
<tr>
<td>441/2</td>
<td>45</td>
<td>May</td>
<td>462</td>
<td>13/8</td>
<td>50</td>
<td>13/8</td>
</tr>
<tr>
<td>441/2</td>
<td>45</td>
<td>Jul</td>
<td>883</td>
<td>115/16</td>
<td>147</td>
<td>13/4</td>
</tr>
<tr>
<td>441/2</td>
<td>45</td>
<td>Oct</td>
<td>367</td>
<td>23/4</td>
<td>188</td>
<td>21/16</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- The Merck option relevant for pricing is the July call with a strike price of $X/n = 30$ dollars.
- Such a call is selling for 15.25.
- So XYZ.com’s stock is worth $15.25 \times n = 15,250$ dollars.
- The entire bond issue is worth

\[B = 44,500 - 15,250 = 29,250 \]

dollars.

- Or 975 per bond.
A Numerical Example (continued)

- The XYZ.com bonds are equivalent to a default-free zero-coupon bond with X par value plus n written European puts on Merck at a strike price of 30.
 - By the put-call parity.
- The difference between B and the price of the default-free bond is the value of these puts.
- The next table shows the total market values of the XYZ.com stock and bonds under various debt amounts X.
<table>
<thead>
<tr>
<th>Promised payment to bondholders</th>
<th>Current market value of bonds</th>
<th>Current market value of stock</th>
<th>Current total value of firm</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>B</td>
<td>nS</td>
<td>V</td>
</tr>
<tr>
<td>30,000</td>
<td>29,250.0</td>
<td>15,250.0</td>
<td>44,500</td>
</tr>
<tr>
<td>35,000</td>
<td>35,000.0</td>
<td>9,500.0</td>
<td>44,500</td>
</tr>
<tr>
<td>40,000</td>
<td>39,000.0</td>
<td>5,500.0</td>
<td>44,500</td>
</tr>
<tr>
<td>45,000</td>
<td>42,562.5</td>
<td>1,937.5</td>
<td>44,500</td>
</tr>
</tbody>
</table>
A Numerical Example (continued)

- Suppose the promised payment to bondholders is $45,000.
- Then the relevant option is the July call with a strike price of $45,000/n = 45$ dollars.
- Since that option is selling for $1\frac{15}{16}$, the market value of the XYZ.com stock is $(1 + 15/16) \times n = 1,937.5$ dollars.
- The market value of the stock decreases as the debt-equity ratio increases.
A Numerical Example (continued)

- There are conflicts between stockholders and bondholders.
- An option’s terms cannot be changed after issuance.
- But a firm can change its capital structure.
- There lies one key difference between options and corporate securities.
 - Parameters such volatility, dividend, and strike price are under partial control of the stockholders.
A Numerical Example (continued)

- Suppose XYZ.com issues 15 more bonds with the same terms to buy back stock.
- The total debt is now $X = 45,000$ dollars.
- The table on p. 348 says the total market value of the bonds should be $42,562.5$.
- The new bondholders pay
 \[42,562.5 \times (15/45) = 14,187.5 \]
 dollars.
- The remaining stock is worth $1,937.5$.
A Numerical Example (continued)

• The stockholders therefore gain

$$14,187.5 + 1,937.5 - 15,250 = 875$$
dollars.

• The original bondholders lose an equal amount,

$$29,250 - \frac{30}{45} \times 42,562.5 = 875.$$
A Numerical Example (continued)

- Suppose the stockholders sell \((1/3) \times n\) Merck shares to fund a $14,833.3 cash dividend.

- They now have $14,833.3 in cash plus a call on \((2/3) \times n\) Merck shares.

- The strike price remains \(X = 30,000\).

- This is equivalent to owning \(2/3\) of a call on \(n\) Merck shares with a total strike price of $45,000.

- \(n\) such calls are worth $1,937.5 (p. 348).

- So the total market value of the XYZ.com stock is \((2/3) \times 1,937.5 = 1,291.67\) dollars.
A Numerical Example (concluded)

- The market value of the XYZ.com bonds is hence

\[(2/3) \times n \times 44.5 - 1,291.67 = 28,375\]

dollars.

- Hence the stockholders gain

\[14,833.3 + 1,291.67 - 15,250 \approx 875\]

dollars.

- The bondholders watch their value drop from $29,250 to $28,375, a loss of $875.
Further Topics

• Other Examples:
 – Subordinated debts as bull call spreads.
 – Warrants as calls.
 – Callable bonds as American calls with 2 strike prices.
 – Convertible bonds.

• Securities with a complex liability structure must be solved by trees.\(^a\)

\(^a\)Dai (R86526008, D8852600), Lyuu, and Wang (F95922018) (2010).
Barrier Optionsa

- Their payoff depends on whether the underlying asset’s price reaches a certain price level H.

- A knock-out option is an ordinary European option which ceases to exist if the barrier H is reached by the price of its underlying asset.

- A call knock-out option is sometimes called a down-and-out option if $H < S$.

- A put knock-out option is sometimes called an up-and-out option when $H > S$.

aA former MBA student in finance told me on March 26, 2004, that she did not understand why I covered barrier options until she started working in a bank. She was working for Lehman Brothers in HK as of April, 2006.
Time

Price

H

S

Barrier hit

Time
Barrier Options (concluded)

• A knock-in option comes into existence if a certain barrier is reached.

• A down-and-in option is a call knock-in option that comes into existence only when the barrier is reached and $H < S$.

• An up-and-in is a put knock-in option that comes into existence only when the barrier is reached and $H > S$.

• Formulas exist for all the possible barrier options mentioned above.a

aHaug (2006).
A Formula for Down-and-In Callsa

- Assume $X \geq H$.
- The value of a European down-and-in call on a stock paying a dividend yield of q is

$$Se^{-q\tau} \left(\frac{H}{S} \right)^{2\lambda} N(x) - Xe^{-r\tau} \left(\frac{H}{S} \right)^{2\lambda-2} N(x - \sigma\sqrt{\tau}),$$

(31)

\[-x \equiv \frac{\ln(H^2/(SX))+(r-q+\sigma^2/2)\tau}{\sigma\sqrt{\tau}}.\]

\[-\lambda \equiv (r - q + \sigma^2/2)/\sigma^2.\]

- A European down-and-out call can be priced via the in-out parity (see text).

aMerton (1973).
A Formula for Up-and-In Puts

• Assume $X \leq H$.

• The value of a European up-and-in put is

\[X e^{-r\tau} \left(\frac{H}{S} \right)^{2\lambda-2} N(-x + \sigma \sqrt{\tau}) - Se^{-q\tau} \left(\frac{H}{S} \right)^{2\lambda} N(-x). \]

• Again, a European up-and-out put can be priced via the in-out parity.

\(^a\)Merton (1973).
Are American Options Barrier Options?a

- American options are barrier options with the exercise boundary as the barrier and the payoff as the rebate?
- One salient difference is that the exercise boundary must be derived during backward induction.
- But the barrier in a barrier option is given a priori.

aContributed by Mr. Yang, Jui-Chung (D97723002) on March 25, 2009.
Interesting Observations

• Assume $H < X$.

• Replace S in the pricing formula Eq. (29) on p. 307 for the call with H^2/S.

• Equation (31) on p. 359 for the down-and-in call becomes Eq. (29) when $r - q = \sigma^2/2$.

• Equation (31) becomes S/H times Eq. (29) when $r - q = 0$.
Interesting Observations (concluded)

• Replace S in the pricing formula for the down-and-in call, Eq. (31), with H^2/S.

• Equation (31) becomes Eq. (29) when $r - q = \sigma^2/2$.

• Equation (31) becomes H/S times Eq. (29) when $r - q = 0$.\(^a\)

• Why?

\(^a\)Contributed by Mr. Chou, Ming-Hsin (R02723073) on April 24, 2014.
Binomial Tree Algorithms

- Barrier options can be priced by binomial tree algorithms.
- Below is for the down-and-out option.
$S = 8$, $X = 6$, $H = 4$, $R = 1.25$, $u = 2$, and $d = 0.5$.
Backward-induction: $C = (0.5 \times C_u + 0.5 \times C_d)/1.25$.