

A proof is that which convinces a reasonable man; a rigorous proof is that which convinces an unreasonable man.

— Mark Kac (1914–1984)

The pursuit of mathematics is a divine madness of the human spirit.

— Alfred North Whitehead (1861–1947),

Science and the Modern World

Stochastic Integrals

- Use $W \equiv \{W(t), t \geq 0\}$ to denote the Wiener process.
- The goal is to develop integrals of X from a class of stochastic processes,^a

$$I_t(X) \equiv \int_0^t X \, dW, \quad t \ge 0.$$

- $I_t(X)$ is a random variable called the stochastic integral of X with respect to W.
- The stochastic process $\{I_t(X), t \geq 0\}$ will be denoted by $\int X dW$.

^aKiyoshi Ito (1915–).

Stochastic Integrals (concluded)

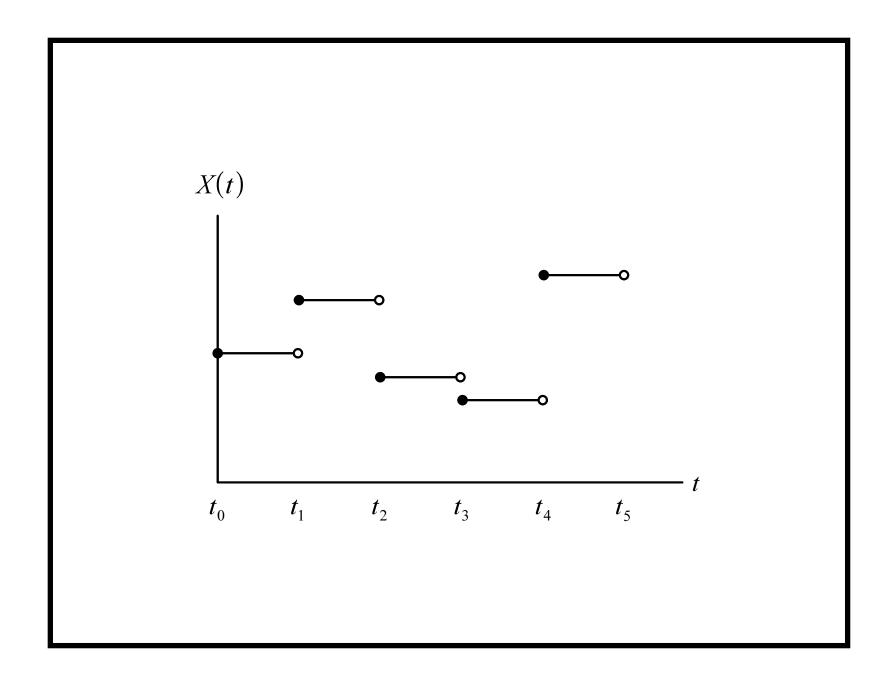
- \bullet Typical requirements for X in financial applications are:
 - Prob $\left[\int_0^t X^2(s) ds < \infty\right] = 1$ for all $t \ge 0$ or the stronger $\int_0^t E[X^2(s)] ds < \infty$.
 - The information set at time t includes the history of X and W up to that point in time.
 - But it contains nothing about the evolution of X or W after t (nonanticipating, so to speak).
 - The future cannot influence the present.
- $\{X(s), 0 \le s \le t\}$ is independent of $\{W(t+u) W(t), u > 0\}.$

Ito Integral

- A theory of stochastic integration.
- As with calculus, it starts with step functions.
- A stochastic process $\{X(t)\}$ is simple if there exist $0 = t_0 < t_1 < \cdots$ such that

$$X(t) = X(t_{k-1})$$
 for $t \in [t_{k-1}, t_k), k = 1, 2, ...$

for any realization (see figure on next page).



Ito Integral (continued)

• The Ito integral of a simple process is defined as

$$I_t(X) \equiv \sum_{k=0}^{n-1} X(t_k) [W(t_{k+1}) - W(t_k)], \qquad (46)$$

where $t_n = t$.

- The integrand X is evaluated at t_k , not t_{k+1} .
- Define the Ito integral of more general processes as a limiting random variable of the Ito integral of simple stochastic processes.

Ito Integral (continued)

- Let $X = \{X(t), t \ge 0\}$ be a general stochastic process.
- Then there exists a random variable $I_t(X)$, unique almost certainly, such that $I_t(X_n)$ converges in probability to $I_t(X)$ for each sequence of simple stochastic processes X_1, X_2, \ldots such that X_n converges in probability to X.
- If X is continuous with probability one, then $I_t(X_n)$ converges in probability to $I_t(X)$ as $\delta_n \equiv \max_{1 \le k \le n} (t_k t_{k-1})$ goes to zero.

Ito Integral (concluded)

- It is a fundamental fact that $\int X dW$ is continuous almost surely.
- The following theorem says the Ito integral is a martingale.
 - A corollary is the mean value formula

$$E\left[\int_{a}^{b} X \, dW\right] = 0.$$

Theorem 15 The Ito integral $\int X dW$ is a martingale.

Discrete Approximation

- Recall Eq. (46) on p. 464.
- The following simple stochastic process $\{\widehat{X}(t)\}$ can be used in place of X to approximate the stochastic integral $\int_0^t X dW$,

$$\widehat{X}(s) \equiv X(t_{k-1}) \text{ for } s \in [t_{k-1}, t_k), k = 1, 2, \dots, n.$$

- Note the nonanticipating feature of \widehat{X} .
 - The information up to time s,

$$\{\widehat{X}(t), W(t), 0 \le t \le s\},\$$

cannot determine the future evolution of X or W.

Discrete Approximation (concluded)

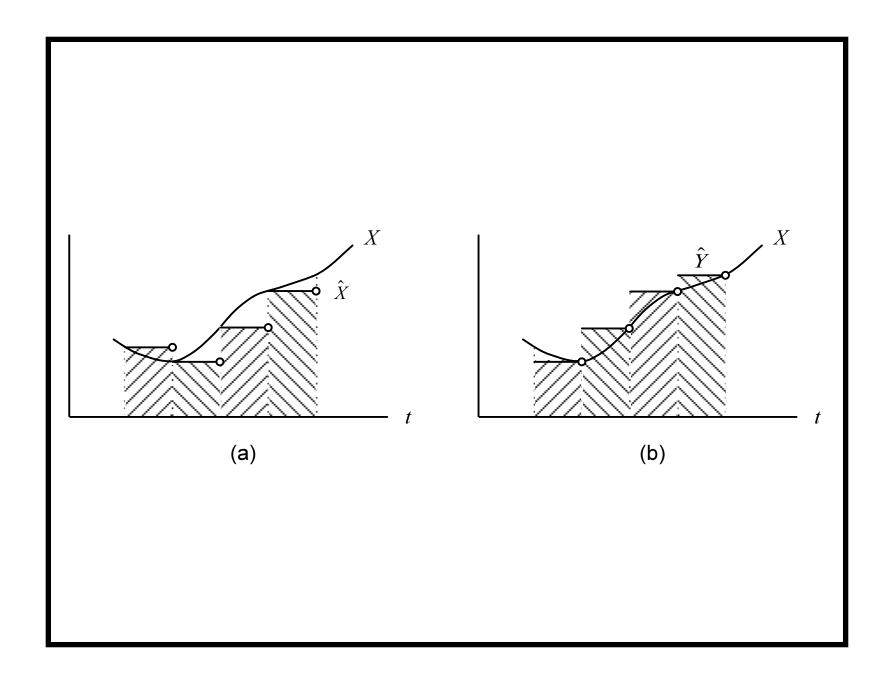
• Suppose we defined the stochastic integral as

$$\sum_{k=0}^{n-1} X(t_{k+1}) [W(t_{k+1}) - W(t_k)].$$

• Then we would be using the following different simple stochastic process in the approximation,

$$\widehat{Y}(s) \equiv X(t_k) \text{ for } s \in [t_{k-1}, t_k), k = 1, 2, \dots, n.$$

• This clearly anticipates the future evolution of X.



Ito Process

• The stochastic process $X = \{X_t, t \geq 0\}$ that solves

$$X_t = X_0 + \int_0^t a(X_s, s) \, ds + \int_0^t b(X_s, s) \, dW_s, \quad t \ge 0$$

is called an Ito process.

- $-X_0$ is a scalar starting point.
- $\{a(X_t,t): t \geq 0\}$ and $\{b(X_t,t): t \geq 0\}$ are stochastic processes satisfying certain regularity conditions.
- The terms $a(X_t, t)$ and $b(X_t, t)$ are the drift and the diffusion, respectively.

Ito Process (continued)

• A shorthand^a is the following stochastic differential equation for the Ito differential dX_t ,

$$dX_t = a(X_t, t) dt + b(X_t, t) dW_t.$$
(47)

- Or simply $dX_t = a_t dt + b_t dW_t$.
- This is Brownian motion with an instantaneous drift a_t and an instantaneous variance b_t^2 .
- X is a martingale if the drift a_t is zero by Theorem 15 (p. 466).

^aPaul Langevin (1904).

Ito Process (concluded)

- dW is normally distributed with mean zero and variance dt.
- An equivalent form to Eq. (47) is

$$dX_t = a_t dt + b_t \sqrt{dt} \xi, (48)$$

where $\xi \sim N(0,1)$.

Euler Approximation

• The following approximation follows from Eq. (48),

$$\widehat{X}(t_{n+1})$$

$$=\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \Delta W(t_n),$$
(49)

where $t_n \equiv n\Delta t$.

- It is called the Euler or Euler-Maruyama method.
- Under mild conditions, $\widehat{X}(t_n)$ converges to $X(t_n)$.
- Recall that $\Delta W(t_n)$ should be interpreted as $W(t_{n+1}) W(t_n)$ instead of $W(t_n) W(t_{n-1})$.

More Discrete Approximations

• Under fairly loose regularity conditions, approximation (49) on p. 473 can be replaced by

$$\widehat{X}(t_{n+1})$$

$$=\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} Y(t_n).$$

 $-Y(t_0), Y(t_1), \ldots$ are independent and identically distributed with zero mean and unit variance.

More Discrete Approximations (concluded)

• An even simpler discrete approximation scheme:

$$\widehat{X}(t_{n+1})$$

$$=\widehat{X}(t_n) + a(\widehat{X}(t_n), t_n) \Delta t + b(\widehat{X}(t_n), t_n) \sqrt{\Delta t} \, \xi.$$

- $\text{ Prob}[\xi = 1] = \text{Prob}[\xi = -1] = 1/2.$
- Note that $E[\xi] = 0$ and $Var[\xi] = 1$.
- This clearly defines a binomial model.
- As Δt goes to zero, \widehat{X} converges to X.

Trading and the Ito Integral

- Consider an Ito process $dS_t = \mu_t dt + \sigma_t dW_t$.
 - $-S_t$ is the vector of security prices at time t.
- Let ϕ_t be a trading strategy denoting the quantity of each type of security held at time t.
 - Hence the stochastic process $\phi_t S_t$ is the value of the portfolio ϕ_t at time t.
- $\phi_t dS_t \equiv \phi_t(\mu_t dt + \sigma_t dW_t)$ represents the change in the value from security price changes occurring at time t.

Trading and the Ito Integral (concluded)

• The equivalent Ito integral,

$$G_T(\boldsymbol{\phi}) \equiv \int_0^T \boldsymbol{\phi}_t d\boldsymbol{S}_t = \int_0^T \boldsymbol{\phi}_t \mu_t dt + \int_0^T \boldsymbol{\phi}_t \sigma_t dW_t,$$

measures the gains realized by the trading strategy over the period [0,T].

Ito's Lemma

A smooth function of an Ito process is itself an Ito process.

Theorem 16 Suppose $f: R \to R$ is twice continuously differentiable and $dX = a_t dt + b_t dW$. Then f(X) is the Ito process,

$$f(X_t)$$
= $f(X_0) + \int_0^t f'(X_s) a_s ds + \int_0^t f'(X_s) b_s dW$
+ $\frac{1}{2} \int_0^t f''(X_s) b_s^2 ds$

for t > 0.

• In differential form, Ito's lemma becomes

$$df(X) = f'(X) a dt + f'(X) b dW + \frac{1}{2} f''(X) b^2 dt.$$
(50)

- Compared with calculus, the interesting part is the third term on the right-hand side.
- A convenient formulation of Ito's lemma is

$$df(X) = f'(X) dX + \frac{1}{2} f''(X) (dX)^{2}.$$

• We are supposed to multiply out $(dX)^2 = (a\,dt + b\,dW)^2$ symbolically according to

×	dW	dt
dW	dt	0
dt	0	0

- The $(dW)^2 = dt$ entry is justified by a known result.
- This form is easy to remember because of its similarity to the Taylor expansion.

Theorem 17 (Higher-Dimensional Ito's Lemma) Let

 W_1, W_2, \ldots, W_n be independent Wiener processes and $X \equiv (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: \mathbb{R}^m \to \mathbb{R}$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + \sum_{j=1}^n b_{ij} dW_j$. Then df(X) is an Ito process with the differential,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k,$$

where $f_i \equiv \partial f/\partial x_i$ and $f_{ik} \equiv \partial^2 f/\partial x_i \partial x_k$.

• The multiplication table for Theorem 17 is

×	dW_i	dt
dW_k	$\delta_{ik} dt$	0
dt	0	0

in which

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k, \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 18 (Alternative Ito's Lemma) Let

 W_1, W_2, \ldots, W_m be Wiener processes and $X \equiv (X_1, X_2, \ldots, X_m)$ be a vector process. Suppose $f: R^m \to R$ is twice continuously differentiable and X_i is an Ito process with $dX_i = a_i dt + b_i dW_i$. Then df(X) is the following Ito process,

$$df(X) = \sum_{i=1}^{m} f_i(X) dX_i + \frac{1}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} f_{ik}(X) dX_i dX_k.$$

Ito's Lemma (concluded)

• The multiplication table for Theorem 18 is

×	dW_i	dt
dW_k	$ \rho_{ik} dt $	0
dt	0	0

• Here, ρ_{ik} denotes the correlation between dW_i and dW_k .

Geometric Brownian Motion

- Consider the geometric Brownian motion process $Y(t) \equiv e^{X(t)}$
 - -X(t) is a (μ,σ) Brownian motion.
 - Hence $dX = \mu dt + \sigma dW$ by Eq. (45) on p. 448.
- As $\partial Y/\partial X = Y$ and $\partial^2 Y/\partial X^2 = Y$, Ito's formula (50) on p. 479 implies

$$dY = Y dX + (1/2) Y (dX)^{2}$$

$$= Y (\mu dt + \sigma dW) + (1/2) Y (\mu dt + \sigma dW)^{2}$$

$$= Y (\mu dt + \sigma dW) + (1/2) Y \sigma^{2} dt.$$

Geometric Brownian Motion (concluded)

• Hence

$$\frac{dY}{Y} = \left(\mu + \sigma^2/2\right)dt + \sigma dW.$$

• The annualized instantaneous rate of return is $\mu + \sigma^2/2$ not μ .

Product of Geometric Brownian Motion Processes

• Let

$$dY/Y = a dt + b dW_Y,$$

$$dZ/Z = f dt + g dW_Z.$$

- Consider the Ito process $U \equiv YZ$.
- Apply Ito's lemma (Theorem 18 on p. 483):

$$dU = Z dY + Y dZ + dY dZ$$

$$= ZY(a dt + b dW_Y) + YZ(f dt + g dW_Z)$$

$$+YZ(a dt + b dW_Y)(f dt + g dW_Z)$$

$$= U(a + f + bg\rho) dt + Ub dW_Y + Ug dW_Z.$$

Product of Geometric Brownian Motion Processes (continued)

- The product of two (or more) correlated geometric Brownian motion processes thus remains geometric Brownian motion.
- Note that

$$Y = \exp [(a - b^{2}/2) dt + b dW_{Y}],$$

$$Z = \exp [(f - g^{2}/2) dt + g dW_{Z}],$$

$$U = \exp [(a + f - (b^{2} + g^{2})/2) dt + b dW_{Y} + g dW_{Z}].$$

Product of Geometric Brownian Motion Processes (concluded)

- $\ln U$ is Brownian motion with a mean equal to the sum of the means of $\ln Y$ and $\ln Z$.
- \bullet This holds even if Y and Z are correlated.
- Finally, $\ln Y$ and $\ln Z$ have correlation ρ .

Quotients of Geometric Brownian Motion Processes

- Suppose Y and Z are drawn from p. 487.
- Let $U \equiv Y/Z$.
- We now show that^a

$$\frac{dU}{U} = (a - f + g^2 - bg\rho) dt + b dW_Y - g dW_Z.$$
(51)

• Keep in mind that dW_Y and dW_Z have correlation ρ .

^aExercise 14.3.6 of the textbook is erroneous.

Quotients of Geometric Brownian Motion Processes (concluded)

• The multidimensional Ito's lemma (Theorem 18 on p. 483) can be employed to show that

$$dU$$

$$= (1/Z) dY - (Y/Z^{2}) dZ - (1/Z^{2}) dY dZ + (Y/Z^{3}) (dZ)^{2}$$

$$= (1/Z)(aY dt + bY dW_{Y}) - (Y/Z^{2})(fZ dt + gZ dW_{Z})$$

$$-(1/Z^{2})(bgYZ\rho dt) + (Y/Z^{3})(g^{2}Z^{2} dt)$$

$$= U(a dt + b dW_{Y}) - U(f dt + g dW_{Z})$$

$$-U(bg\rho dt) + U(g^{2} dt)$$

$$= U(a - f + g^{2} - bg\rho) dt + Ub dW_{Y} - Ug dW_{Z}.$$

Ornstein-Uhlenbeck Process

• The Ornstein-Uhlenbeck process:

$$dX = -\kappa X dt + \sigma dW,$$

where $\kappa, \sigma \geq 0$.

• It is known that

$$E[X(t)] = e^{-\kappa(t-t_0)} E[x_0],$$

$$Var[X(t)] = \frac{\sigma^2}{2\kappa} \left(1 - e^{-2\kappa(t-t_0)}\right) + e^{-2\kappa(t-t_0)} Var[x_0],$$

$$Cov[X(s), X(t)] = \frac{\sigma^2}{2\kappa} e^{-\kappa(t-s)} \left[1 - e^{-2\kappa(s-t_0)}\right] + e^{-\kappa(t+s-2t_0)} Var[x_0],$$

for $t_0 \leq s \leq t$ and $X(t_0) = x_0$.

Ornstein-Uhlenbeck Process (continued)

- X(t) is normally distributed if x_0 is a constant or normally distributed.
- X is said to be a normal process.
- $E[x_0] = x_0$ and $Var[x_0] = 0$ if x_0 is a constant.
- The Ornstein-Uhlenbeck process has the following mean reversion property.
 - When X > 0, X is pulled X toward zero.
 - When X < 0, it is pulled toward zero again.

Ornstein-Uhlenbeck Process (continued)

• Another version:

$$dX = \kappa(\mu - X) dt + \sigma dW,$$

where $\sigma \geq 0$.

• Given $X(t_0) = x_0$, a constant, it is known that

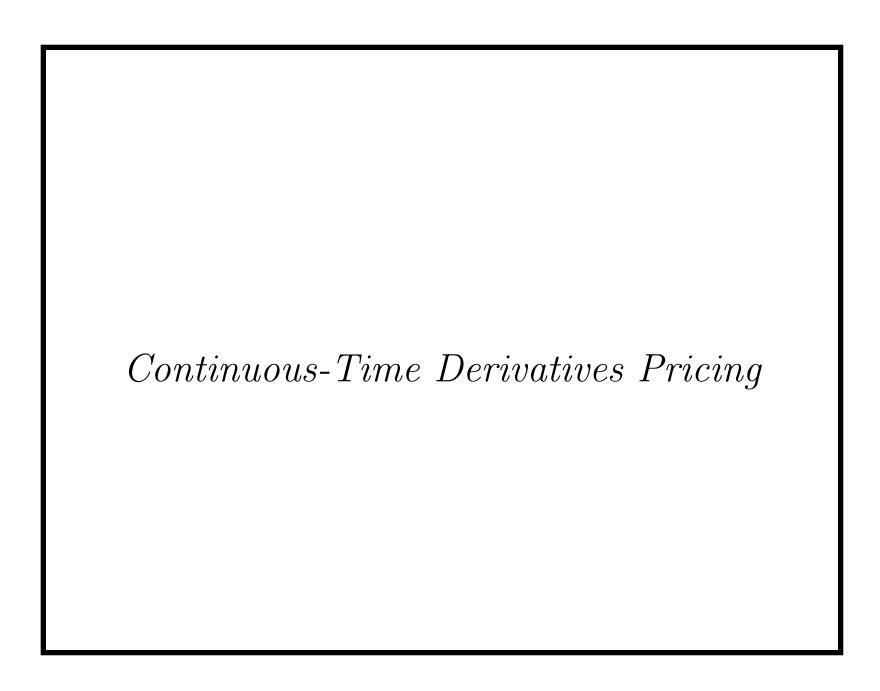
$$E[X(t)] = \mu + (x_0 - \mu) e^{-\kappa(t - t_0)}, \qquad (52)$$

$$Var[X(t)] = \frac{\sigma^2}{2\kappa} \left[1 - e^{-2\kappa(t - t_0)} \right],$$

for $t_0 \leq t$.

Ornstein-Uhlenbeck Process (concluded)

- The mean and standard deviation are roughly μ and $\sigma/\sqrt{2\kappa}$, respectively.
- For large t, the probability of X < 0 is extremely unlikely in any finite time interval when $\mu > 0$ is large relative to $\sigma/\sqrt{2\kappa}$.
- The process is mean-reverting.
 - -X tends to move toward μ .
 - Useful for modeling term structure, stock price volatility, and stock price return.



I have hardly met a mathematician who was capable of reasoning. — Plato (428 B.C.–347 B.C.)

Toward the Black-Scholes Differential Equation

- The price of any derivative on a non-dividend-paying stock must satisfy a partial differential equation.
- The key step is recognizing that the same random process drives both securities.
- As their prices are perfectly correlated, we figure out the amount of stock such that the gain from it offsets exactly the loss from the derivative.
- The removal of uncertainty forces the portfolio's return to be the riskless rate.

Assumptions

- The stock price follows $dS = \mu S dt + \sigma S dW$.
- There are no dividends.
- Trading is continuous, and short selling is allowed.
- There are no transactions costs or taxes.
- All securities are infinitely divisible.
- The term structure of riskless rates is flat at r.
- There is unlimited riskless borrowing and lending.
- t is the current time, T is the expiration time, and $\tau \equiv T t$.

Black-Scholes Differential Equation

- Let C be the price of a derivative on S.
- From Ito's lemma (p. 481),

$$dC = \left(\mu S \frac{\partial C}{\partial S} + \frac{\partial C}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2}\right) dt + \sigma S \frac{\partial C}{\partial S} dW.$$

- The same W drives both C and S.
- Short one derivative and long $\partial C/\partial S$ shares of stock (call it Π).
- By construction,

$$\Pi = -C + S(\partial C/\partial S).$$

Black-Scholes Differential Equation (continued)

• The change in the value of the portfolio at time dt is

$$d\Pi = -dC + \frac{\partial C}{\partial S} \, dS.$$

• Substitute the formulas for dC and dS into the partial differential equation to yield

$$d\Pi = \left(-\frac{\partial C}{\partial t} - \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2}\right) dt.$$

• As this equation does not involve dW, the portfolio is riskless during dt time: $d\Pi = r\Pi dt$.

Black-Scholes Differential Equation (concluded)

• So

$$\left(\frac{\partial C}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C}{\partial S^2}\right) dt = r\left(C - S\frac{\partial C}{\partial S}\right) dt.$$

• Equate the terms to finally obtain

$$\frac{\partial C}{\partial t} + rS \frac{\partial C}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC.$$

• When there is a dividend yield q,

$$\frac{\partial C}{\partial t} + (r - q) S \frac{\partial C}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C}{\partial S^2} = rC.$$

Rephrase

• The Black-Scholes differential equation can be expressed in terms of sensitivity numbers,

$$\Theta + rS\Delta + \frac{1}{2}\sigma^2 S^2 \Gamma = rC. \tag{53}$$

- Identity (53) leads to an alternative way of computing Θ numerically from Δ and Γ .
- When a portfolio is delta-neutral,

$$\Theta + \frac{1}{2}\sigma^2 S^2 \Gamma = rC.$$

- A definite relation thus exists between Γ and Θ .

PDEs for Asian Options

- Add the new variable $A(t) \equiv \int_0^t S(u) du$.
- Then the value V of the Asian option satisfies this two-dimensional PDE:^a

$$\frac{\partial V}{\partial t} + rS\frac{\partial V}{\partial S} + \frac{1}{2}\sigma^2 S^2\frac{\partial^2 V}{\partial S^2} + S\frac{\partial V}{\partial A} = rV.$$

• The terminal conditions are

$$V(T, S, A) = \max\left(\frac{A}{T} - X, 0\right)$$
 for call,

$$V(T, S, A) = \max \left(X - \frac{A}{T}, 0\right)$$
 for put.

^aKemna and Vorst (1990).

PDEs for Asian Options (continued)

- The two-dimensional PDE produces algorithms similar to that on pp. 334ff.
- But one-dimensional PDEs are available for Asian options.^a
- For example, Večeř (2001) derives the following PDE for Asian calls:

$$\frac{\partial u}{\partial t} + r\left(1 - \frac{t}{T} - z\right) \frac{\partial u}{\partial z} + \frac{\left(1 - \frac{t}{T} - z\right)^2 \sigma^2}{2} \frac{\partial^2 u}{\partial z^2} = 0$$

with the terminal condition $u(T, z) = \max(z, 0)$.

^aRogers and Shi (1995); Večeř (2001); Dubois and Lelièvre (2005).

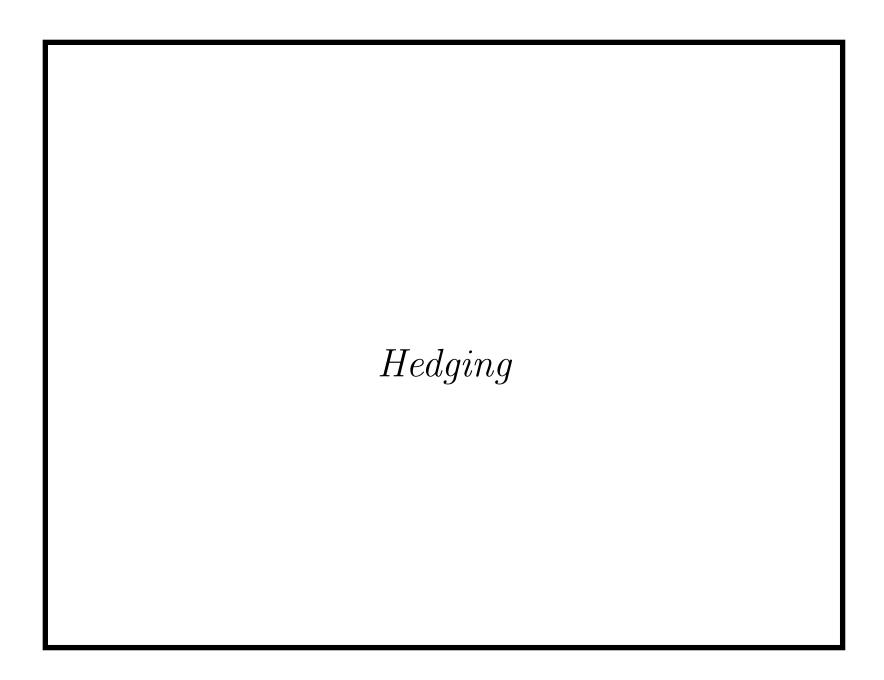
PDEs for Asian Options (concluded)

• For Asian puts:

$$\frac{\partial u}{\partial t} + r\left(\frac{t}{T} - 1 - z\right) \frac{\partial u}{\partial z} + \frac{\left(\frac{t}{T} - 1 - z\right)^2 \sigma^2}{2} \frac{\partial^2 u}{\partial z^2} = 0$$

with the same terminal condition.

• One-dimensional PDEs lead to highly efficient numerical methods.



When Professors Scholes and Merton and I invested in warrants, Professor Merton lost the most money. And I lost the least. — Fischer Black (1938–1995)

Delta Hedge

- The delta (hedge ratio) of a derivative f is defined as $\Delta \equiv \partial f/\partial S$.
- Thus $\Delta f \approx \Delta \times \Delta S$ for relatively small changes in the stock price, ΔS .
- A delta-neutral portfolio is hedged in the sense that it is immunized against small changes in the stock price.
- A trading strategy that dynamically maintains a delta-neutral portfolio is called delta hedge.

Delta Hedge (concluded)

- Delta changes with the stock price.
- A delta hedge needs to be rebalanced periodically in order to maintain delta neutrality.
- In the limit where the portfolio is adjusted continuously, perfect hedge is achieved and the strategy becomes self-financing.

Implementing Delta Hedge

- \bullet We want to hedge N short derivatives.
- Assume the stock pays no dividends.
- The delta-neutral portfolio maintains $N \times \Delta$ shares of stock plus B borrowed dollars such that

$$-N \times f + N \times \Delta \times S - B = 0.$$

- At next rebalancing point when the delta is Δ' , buy $N \times (\Delta' \Delta)$ shares to maintain $N \times \Delta'$ shares with a total borrowing of $B' = N \times \Delta' \times S' N \times f'$.
- Delta hedge is the discrete-time analog of the continuous-time limit and will rarely be self-financing.

Example

- A hedger is *short* 10,000 European calls.
- $\sigma = 30\%$ and r = 6%.
- This call's expiration is four weeks away, its strike price is \$50, and each call has a current value of f = 1.76791.
- As an option covers 100 shares of stock, N = 1,000,000.
- The trader adjusts the portfolio weekly.
- The calls are replicated well if the cumulative cost of trading *stock* is close to the call premium's FV.

^aThis example takes the replication viewpoint.

- As $\Delta=0.538560$, $N\times\Delta=538,560$ shares are purchased for a total cost of $538,560\times50=26,928,000$ dollars to make the portfolio delta-neutral.
- The trader finances the purchase by borrowing

$$B = N \times \Delta \times S - N \times f = 25,160,090$$

dollars net.^a

• The portfolio has zero net value now.

^aThis takes the hedging viewpoint — an alternative. See an exercise in the text.

- At 3 weeks to expiration, the stock price rises to \$51.
- The new call value is f' = 2.10580.
- So the portfolio is worth

$$-N \times f' + 538,560 \times 51 - Be^{0.06/52} = 171,622$$

before rebalancing.

- A delta hedge does not replicate the calls perfectly; it is not self-financing as \$171,622 can be withdrawn.
- The magnitude of the tracking error—the variation in the net portfolio value—can be mitigated if adjustments are made more frequently.
- In fact, the tracking error over one rebalancing act is positive about 68% of the time, but its expected value is essentially zero.^a
- It is furthermore proportional to vega.

^aBoyle and Emanuel (1980).

- In practice tracking errors will cease to decrease beyond a certain rebalancing frequency.
- With a higher delta $\Delta' = 0.640355$, the trader buys $N \times (\Delta' \Delta) = 101,795$ shares for \$5,191,545.
- The number of shares is increased to $N \times \Delta' = 640,355$.

• The cumulative cost is

$$26,928,000 \times e^{0.06/52} + 5,191,545 = 32,150,634.$$

• The total borrowed amount is

$$B' = 640,355 \times 51 - N \times f' = 30,552,305.$$

• The portfolio is again delta-neutral with zero value.

		Option		Change in	No. shares	Cost of	Cumulative
		value	Delta	delta	bought	shares	cost
au	S	f	Δ		$N \! imes \! (5)$	$(1)\times(6)$	FV(8')+(7)
	(1)	(2)	(3)	(5)	(6)	(7)	(8)
4	50	1.7679	0.53856		$538,\!560$	26,928,000	26,928,000
3	51	2.1058	0.64036	0.10180	101,795	$5,\!191,\!545$	$32,\!150,\!634$
2	53	3.3509	0.85578	0.21542	$215,\!425$	$11,\!417,\!525$	$43,\!605,\!277$
1	52	2.2427	0.83983	-0.01595	-15,955	$-829,\!660$	$42,\!825,\!960$
0	54	4.0000	1.00000	0.16017	$160,\!175$	8,649,450	$51,\!524,\!853$

The total number of shares is 1,000,000 at expiration (trading takes place at expiration, too).

Example (concluded)

- At expiration, the trader has 1,000,000 shares.
- They are exercised against by the in-the-money calls for \$50,000,000.
- The trader is left with an obligation of

$$51,524,853 - 50,000,000 = 1,524,853,$$

which represents the replication cost.

• Compared with the FV of the call premium,

$$1,767,910 \times e^{0.06 \times 4/52} = 1,776,088,$$

the net gain is 1,776,088 - 1,524,853 = 251,235.

Tracking Error Revisited

- Define the dollar gamma as $S^2\Gamma$.
- The change in value of a delta-hedged long option position after a duration of Δt is proportional to the dollar gamma.
- It is about

$$(1/2)S^2\Gamma[(\Delta S/S)^2 - \sigma^2 \Delta t].$$

 $-(\Delta S/S)^2$ is called the daily realized variance.

Tracking Error Revisited (continued)

- Let the rebalancing times be t_1, t_2, \ldots, t_n .
- Let $\Delta S_i = S_{i+1} S_i$.
- The total tracking error at expiration is about

$$\sum_{i=0}^{n-1} e^{r(T-t_i)} \frac{S_i^2 \Gamma_i}{2} \left[\left(\frac{\Delta S_i}{S_i} \right)^2 - \sigma^2 \Delta t \right],$$

• The tracking error is path dependent.

Tracking Error Revisited (concluded)^a

- The tracking error ϵ_n over n rebalancing acts (such as 251,235 on p. 519) has about the same probability of being positive as being negative.
- Subject to certain regularity conditions, the root-mean-square tracking error $\sqrt{E[\epsilon_n^2]}$ is $O(1/\sqrt{n})$.
- The root-mean-square tracking error increases with σ at first and then decreases.

^aBertsimas, Kogan, and Lo (2000).

^bSee also Grannan and Swindle (1996).

Delta-Gamma Hedge

- Delta hedge is based on the first-order approximation to changes in the derivative price, Δf , due to changes in the stock price, ΔS .
- When ΔS is not small, the second-order term, gamma $\Gamma \equiv \partial^2 f/\partial S^2$, helps (theoretically).
- A delta-gamma hedge is a delta hedge that maintains zero portfolio gamma, or gamma neutrality.
- To meet this extra condition, one more security needs to be brought in.

Delta-Gamma Hedge (concluded)

- Suppose we want to hedge short calls as before.
- A hedging call f_2 is brought in.
- To set up a delta-gamma hedge, we solve

$$-N \times f + n_1 \times S + n_2 \times f_2 - B = 0 \quad \text{(self-financing)},$$

$$-N \times \Delta + n_1 + n_2 \times \Delta_2 - 0 = 0 \quad \text{(delta neutrality)},$$

$$-N \times \Gamma + 0 + n_2 \times \Gamma_2 - 0 = 0 \quad \text{(gamma neutrality)},$$

for $n_1, n_2,$ and B.

- The gammas of the stock and bond are 0.

Other Hedges

- If volatility changes, delta-gamma hedge may not work well.
- An enhancement is the delta-gamma-vega hedge, which also maintains vega zero portfolio vega.
- To accomplish this, one more security has to be brought into the process.
- In practice, delta-vega hedge, which may not maintain gamma neutrality, performs better than delta hedge.