Definitions and Basic Results (continued)

- A square matrix A is said to be symmetric if $A^T = A$.
 - Such matrices are nonsingular.
- A diagonal $m \times n$ matrix $D \equiv [d_{ij}]_{i,j}$ may be denoted by $\text{diag}[D_1, D_2, \ldots, D_q]$, where $q \equiv \min(m, n)$ and $D_i = a_i$ for $1 \leq i \leq q$.
- The identity matrix is the square matrix
 $$I \equiv \text{diag}[1, 1, \ldots, 1].$$

Definitions and Basic Results

- Let $A \equiv [a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n}$, or simply $A \in \mathbb{R}^{m \times n}$, denote an $m \times n$ matrix.
- It can also be represented as $[a_1, a_2, \ldots, a_n]$ where $a_i \in \mathbb{R}^m$ are vectors.
 - Vectors are column vectors unless stated otherwise.
- A is a square matrix when $m = n$.
- The rank of a matrix is the largest number of linearly independent columns.
- An $m \times n$ matrix is rank deficient if its rank is less than $\min(m, n)$; otherwise, it has full rank.

Diagonal Matrices

$$
\begin{align*}
\begin{bmatrix}
\times & 0 & 0 & 0 \\
0 & \times & 0 & 0 \\
0 & 0 & \times & 0 \\
0 & 0 & 0 & \times
\end{bmatrix}
& \equiv
\begin{bmatrix}
\times & 0 \\
0 & \times \\
0 & 0 \\
0 & 0
\end{bmatrix}
\end{align*}
$$
Definitions and Basic Results (concluded)

- A matrix has full column rank if its columns are linearly independent.
- A real symmetric matrix A is positive definite if $x^T Ax = \sum_{i,j} a_{ij} x_i x_j > 0$ for any nonzero vector x.
- It is known that a matrix A is positive definite if and only if there exists a matrix W such that $A = W^T W$ and W has full column rank.

Decompositions

- Positive definite matrices can be factored as
 $$A = LL^T,$$
 called the Cholesky decomposition.

Orthogonal and Orthonormal Matrices

- A vector set $\{x_1, x_2, \ldots, x_p\}$ is orthogonal if all its vectors are nonzero and the inner products $x_i^T x_j$ equal zero for $i \neq j$.
- It is orthonormal if, furthermore,
 $$x_i^T x_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
- A real square matrix Q is orthogonal if $Q^T Q = I$.
- For such matrices, $Q^{-1} = Q^T$ and $QQ^T = I$.
Eigenvalues and Eigenvectors

- An eigenvalue of a square matrix A is a complex number λ such that $Ax = \lambda x$ for some nonzero vector x called an eigenvector.
- The eigenvalues for a real symmetric matrix are real,
- For them, the Schur decomposition theorem\(^a\) says that there exists a real orthogonal matrix Q such that $Q^T AQ = \text{diag} [\lambda_1, \lambda_2, \ldots, \lambda_n]$.
 - Q’s ith column is the eigenvector corresponding to λ_i, and the eigenvectors form an orthonormal set,
- The eigenvalues of positive definite matrices are positive.

\(^a\) Also called the principal axes theorem or the spectral theorem.

Generation of Multivariate Normal Distribution

- Let $x \equiv [x_1, x_2, \ldots, x_n]^T$ be a vector random variable with a positive definite covariance matrix C.
- As usual, assume $E[x] = 0$.
- This distribution can be generated by Py.
 - $C = PP^T$ is the Cholesky decomposition of C.
 - $y \equiv [y_1, y_2, \ldots, y_n]^T$ is a vector random variable with a covariance matrix equal to the identity matrix.
- Reason (see text):
 \[
 \text{Cov}[Py] = P \text{Cov}[y] P^T = PP^T = C.
 \]

Generation of Multivariate Normal Distribution (concluded)

- Suppose we want to generate the multivariate normal distribution with a covariance matrix $C = PP^T$.
- We start with independent standard normal distributions y_1, y_2, \ldots, y_n.
- Then $P[y_1, y_2, \ldots, y_n]^T$ has the desired distribution.

Multivariate Derivatives Pricing

- Generating the multivariate normal distribution is essential for the Monte Carlo pricing of multivariate derivatives.
- The rainbow option on k assets has payoff
 \[
 \max(\max(S_1, S_2, \ldots, S_k) - X, 0)
 \]
 at maturity.
- The closed-form formula is a multi-dimensional integral\(^a\).

\(^a\) Johnson (1987).
Conditional Variance Models for Price Volatility

- Although a stationary model (see text for definition) has constant variance, its conditional variance may vary.
- Take for example an AR(1) process \(X_t = \alpha X_{t-1} + \epsilon_t \) with \(|\alpha| < 1\).
 - Here, \(\epsilon_t \) is a stationary, uncorrelated process with zero mean and constant variance \(\sigma^2 \).
- The conditional variance,
 \[
 \text{Var}[X_t | X_{t-1}, X_{t-2}, \ldots] = \sigma^2 \frac{1}{1-\alpha^2},
 \]
 equals \(\sigma^2 \), which is smaller than the unconditional variance \(\text{Var}[X_t] = \sigma^2/(1-\alpha^2) \).

Conditional Variance Models for Price Volatility (continued)

- In the Black-Scholes model, past information has no effects on the variance of prediction.
- To address this drawback, consider models for returns \(X_t \) consistent with a changing conditional variance:
 \[
 X_t - \mu = V_t U_t,
 \]
 - \(U_t \) has zero mean and unit variance for all \(t \),
 - \(E[X_t] = \mu \) for all \(t \),
 - \(\text{Var}[X_t | V_t = u_t] = v_t^2 \).
Conditional Variance Models for Price Volatility
(continued)

- The process \(\{ V_t^2 \} \) models the conditional variance.
- Suppose \(\{ U_t \} \) and \(\{ V_t \} \) are independent of each other, which means \(\{ U_1, U_2, \ldots, U_n \} \) and \(\{ V_1, V_2, \ldots, V_n \} \) are independent for all \(n \).
- Then \(\{ X_t \} \) is uncorrelated because
 \[
 \text{Cov}[X_t, X_{t+\tau}] = 0 \quad (74)
 \]
 for \(\tau > 0 \) (see text for proof).

Conditional Variance Models for Price Volatility
(continued)

- Suppose we assume that conditional variances are deterministic functions of past returns:
 \[
 V_t = f(X_{t-1}, X_{t-2}, \ldots)
 \]
 for some function \(f \).
- Then \(V_t \) can be computed given the information set of past returns:
 \[
 I_{t-1} \equiv \{ X_{t-1}, X_{t-2}, \ldots \}.
 \]

ARCH Models\(^a\)

- An influential model in this direction is the autoregressive conditional heteroskedastic (ARCH) model.
- Assume \(U_t \) is independent of \(V_t, U_{t-1}, V_{t-1}, U_{t-2}, \ldots \) for all \(t \).
- Consequently \(\{ X_t \} \) is uncorrelated by Eq. (74) on p. 641.
- Assume furthermore that \(\{ U_t \} \) is a Gaussian stationary, uncorrelated process,
- Then \(X_t | I_{t-1} \sim N(\mu, V_t^2) \).

\(^a\) Engle (1982), co-winner of the 2003 Nobel Prize in Economic Sciences.
ARCH Models (continued)

- The ARCH\((p) \) process is defined by

\[
X_t - \mu = \left(a_0 + \sum_{i=1}^{p} a_i (X_{t-i} - \mu)^2 \right)^{1/2} U_t,
\]

where \(a_1, \ldots, a_p \geq 0 \) and \(a_0 > 0 \).

- The variance \(V_t^2 \) thus satisfies

\[
V_t^2 = a_0 + \sum_{i=1}^{p} a_i (X_{t-i} - \mu)^2.
\]

- The volatility at time \(t \) as estimated at time \(t-1 \) depends on the \(p \) most recent observations on squared returns.

GARCH Models\(^a\)

- A very popular extension of the ARCH model is the generalized autoregressive conditional heteroskedastic (GARCH) process.

- The simplest GARCH\((1,1)\) process adds \(a_2 V_t^2 \) to the ARCH\((1)\) process, resulting in

\[
V_t^2 = a_0 + a_1 (X_{t-1} - \mu)^2 + a_2 V_{t-1}^2.
\]

- The volatility at time \(t \) as estimated at time \(t-1 \) depends on the squared return and the estimated volatility at time \(t-1 \).

\(^a\)Bollerslev (1986) and Taylor (1986).

ARCH Models (concluded)

- The ARCH\((1)\) process

\[
X_t - \mu = (a_0 + a_1 (X_{t-1} - \mu)^2)^{1/2} U_t
\]

is the simplest.

- For it,

\[
\text{Var}[X_t \mid X_{t-1} = x_{t-1}] = a_0 + a_1 (x_{t-1} - \mu)^2.
\]

- The process \(\{X_t\} \) is stationary with finite variance if and only if \(a_1 < 1 \), in which case \(\text{Var}[X_t] = a_0/(1-a_1) \).

GARCH Models (concluded)

- The estimate of volatility averages past squared returns by giving heavier weights to recent squared returns (see text).

- It is usually assumed that \(a_1 + a_2 < 1 \) and \(a_0 > 0 \), in which case the unconditional, long-run variance is given by \(a_0/(1-a_1-a_2) \).

- A popular special case of GARCH\((1,1)\) is the exponentially weighted moving average process, which sets \(a_0 \) to zero and \(a_2 \) to \(1-a_1 \).

- This model is used in J.P. Morgan’s RiskMetrics™.
GARCH Option Pricing

- Options can be priced when the underlying asset's return follows a GARCH process.
- Let S_t denote the asset price at date t.
- Let h^2_t be the conditional variance of the return over the period $[t, t+1]$ given the information at date t.
 - “One day” is merely a convenient term for any elapsed time Δt.

GARCH Option Pricing (continued)

- Adopt the following risk-neutral process for the price dynamics:\(^a\)
 \[
 \ln \frac{S_{t+1}}{S_t} = r - \frac{h^2_t}{2} + h_t \epsilon_{t+1},
 \]
 where
 \[
 h^2_{t+1} = \beta_0 + \beta_1 h^2_t + \beta_2 h^2_t (\epsilon_{t+1} - c)^2, \quad (75)
 \]
 $\epsilon_{t+1} \sim N(0, 1)$ given information at date t,
 $r = \text{daily riskless return}$,
 $c \geq 0$.

\(^a\)Duan (1995).

GARCH Option Pricing (continued)

- The five unknown parameters of the model are $c, h_0, \beta_0, \beta_1, \text{and } \beta_2$.
- It is postulated that $\beta_0, \beta_1, \beta_2 \geq 0$ to make the conditional variance positive.
- The above process, called the nonlinear asymmetric GARCH model, generalizes the GARCH(1, 1) model (see text).

GARCH Option Pricing (concluded)

- With $y_t \equiv \ln S_t$ denoting the logarithmic price, the model becomes
 \[
 y_{t+1} = y_t + r - \frac{h^2_t}{2} + h_t \epsilon_{t+1}.
 \]
 - The pair (y_t, h^2_t) completely describes the current state.
 - The conditional mean and variance of y_{t+1} are clearly
 \[
 E[y_{t+1} | y_t, h^2_t] = y_t + r - \frac{h^2_t}{2}, \quad (76)
 \]
 \[
 \text{Var}[y_{t+1} | y_t, h^2_t] = h^2_t. \quad (77)
 \]
The Ritchken-Trevor (RT) Algorithma

- The GARCH model is a continuous-state model.
- To approximate it, we turn to trees with discrete states.
- Path dependence in GARCH makes the tree for asset prices explode exponentially.
- We need to mitigate this combinatorial explosion somewhat.

aRitchken and Trevor (1999).

The Ritchken-Trevor Algorithm (continued)

- It remains to pick the jump size and the three branching probabilities.
- The role of σ in the Black-Scholes option pricing model is played by h_t in the GARCH model.
- As a jump size proportional to σ/\sqrt{n} is picked in the BOPM, a comparable magnitude will be chosen here.
- Define $\gamma \equiv h_0$, though other multiples of h_0 are possible, and $\gamma_n \equiv \frac{\gamma}{\sqrt{n}}$.
- The jump size will be some integer multiple η of γ_n.
- We call η the jump parameter (see p. 656).

The Ritchken-Trevor Algorithm (continued)

- Partition a day into n periods.
- Three states follow each state (y_t, h_t^2) after a period.
- As the trinomial model combines, $2n + 1$ states at date $t + 1$ follow each state at date t (recall p. 550).
- These $2n + 1$ values must approximate the distribution of (y_{t+1}, h_{t+1}^2).
- So the conditional moments (76) (77) at date $t + 1$ on p. 652 must be matched by the trinomial model to guarantee convergence to the continuous-state model.

The seven values on the right approximate the distribution of logarithmic price y_{t+1}.
The Ritchken-Trevor Algorithm (continued)

- The middle branch does not change the underlying asset's price.
- The probabilities for the up, middle, and down branches are

\[
P_u = \frac{h_i^2}{2\eta^2\gamma^2} + \frac{r - (h_i^2/2)}{2\eta\gamma\sqrt{n}}, \quad (78)
\]

\[
P_m = 1 - \frac{h_i^2}{\eta^2\gamma^2}, \quad (79)
\]

\[
P_d = \frac{h_i^2}{2\eta^2\gamma^2} - \frac{r - (h_i^2/2)}{2\eta\gamma\sqrt{n}}, \quad (80)
\]

The Ritchken-Trevor Algorithm (continued)

- We can dispense with the intermediate nodes between dates to create a \((2n + 1)\)-nomial tree (see p. 660).
- The resulting model is multinomial with \(2n + 1\) branches from any state \((y_t, h_t^2)\).
- There are two reasons behind this manipulation.
 - Nodes are created merely to approximate the continuous-state model after one day.
 - Keeping the intermediate nodes results in a tree that is \(n\) times as large.

The Ritchken-Trevor Algorithm (continued)

- It can be shown that the trinomial model takes on \(2n + 1\) values at date \(t + 1\) with a matching mean and variance for \(y_{t+1}\).
- The central limit theorem thus guarantees the desired convergence as \(n\) increases.

This heptanomial tree is the outcome of the trinomial tree on p. 666 after its intermediate nodes are removed.
The Ritchken-Trevor Algorithm (continued)

- A node with logarithmic price \(y_t + \ell \eta \gamma_n \) at date \(t + 1 \) follows the current node at date \(t \) with price \(y_t \) for some \(-n \leq \ell \leq n \).
- To reach that price in \(n \) periods, the number of up moves must exceed that of down moves by exactly \(\ell \).
- The probability that this happens is

\[
P(\ell) = \sum_{j_u,j_m,j_d} \frac{n!}{j_u! j_m! j_d!} p_{j_u}^m p_{j_m}^m p_{j_d}^d,
\]

with \(j_u, j_m, j_d \geq 0 \), \(n = j_u + j_m + j_d \), and \(\ell = j_u - j_d \).

©2004 Prof. Yuh-Dauh Lyu, National Taiwan University
Page 661

The Ritchken-Trevor Algorithm (continued)

- The updating rule (75) on p. 650 must be modified to account for the adoption of the discrete-state model.
- The logarithmic price \(y_t + \ell \eta \gamma_n \) at date \(t + 1 \) following state \((y_t, h_t^2)\) at date \(t \) has a variance equal to

\[
h_{t+1}^2 = \beta_0 + \beta_1 h_t^2 + \beta_2 h_t^2 (\epsilon_{t+1} - c)^2,
\]

where

\[
\epsilon_{t+1} = \frac{\ell \eta \gamma_n - (r - h_t^2/2)}{h_t}, \quad \ell = 0, \pm 1, \pm 2, \ldots, \pm n,
\]

is a discrete random variable with \(2n + 1 \) values.

©2004 Prof. Yuh-Dauh Lyu, National Taiwan University
Page 663

The Ritchken-Trevor Algorithm (continued)

- A particularly simple way to calculate the \(P(\ell) \)s starts by noting that

\[
(p_u x + p_m + p_d x^{-1})^n = \sum_{\ell=-n}^{n} P(\ell) x^\ell.
\]

- So we expand \((p_u x + p_m + p_d x^{-1})^n\) and retrieve the probabilities by reading off the coefficients.
- It can be computed in \(O(n^2) \) time.

©2004 Prof. Yuh-Dauh Lyu, National Taiwan University
Page 662

The Ritchken-Trevor Algorithm (continued)

- Different conditional variances \(h_t^2 \) may require different \(\eta \) so that the probabilities calculated by Eqs. (78) (80) on p. 657 lie between 0 and 1.
- This implies varying jump sizes.
- The necessary requirement \(p_m \geq 0 \) implies \(\eta \geq h_t/\gamma \).
- Hence we try

\[
\eta = [h_t/\gamma], [h_t/\gamma] + 1, [h_t/\gamma] + 2, \ldots
\]

until valid probabilities are obtained or until their nonexistence is confirmed.

©2004 Prof. Yuh-Dauh Lyu, National Taiwan University
Page 664
The Ritchken-Trevor Algorithm (continued)

- The sufficient and necessary condition for valid probabilities to exist is
 \[
 \frac{|r - (h_t^2/2)|}{2\eta_t \sqrt{n}} \leq \frac{h_t^2}{2\eta_t^2 \gamma^2} \leq \min \left(1 - \frac{|r - (h_t^2/2)|}{2\eta_t \sqrt{n}}, \frac{1}{2}\right).
 \]

- Obviously, the magnitude of \(\eta \) tends to grow with \(h_t \).
- The plot on p. 666 uses \(n = 1 \) to illustrate our points for a 3-day model.
- For example, node (1, 1) of date 1 and node (2, 3) of date 2 pick \(\eta = 2 \).