Bond Price Volatility

Price Volatility

- Volatility measures how bond prices respond to interest rate changes.
- It is key to the risk management of interest-rate-sensitive securities.
- Assume level-coupon bonds throughout.

Price Volatility (concluded)

- What is the sensitivity of the percentage price change to changes in interest rates?
- Define price volatility by

\[\text{Price Volatility} = \frac{\partial P}{\partial y} . \]

Price Volatility of Bonds

- The price volatility of a coupon bond is

\[\text{Price Volatility} = - \frac{(C/y) n - (C/y^2) ((1 + y)^{n+1} - (1 + y)) - nF}{(C/y) ((1 + y)^{n+1} - (1 + y)) + F(1 + y)} , \]

where \(F \) is the par value, and \(C \) is the coupon payment per period.

- For bonds without embedded options,

\[- \frac{\partial P}{\partial y} > 0 . \]
Behavior of Price Volatility (1)

- Price volatility increases as the coupon rate decreases.
 - Zero-coupon bonds are the most volatile.
 - Bonds selling at a deep discount are more volatile than those selling near or above par.
- Price volatility increases as the required yield decreases.
 - So bonds traded with higher yields are less volatile.

Behavior of Price Volatility (2)

- For bonds selling above par or at par, price volatility increases as the term to maturity lengthens (see figure on next page).
 - Bonds with a longer maturity are more volatile.
- For bonds selling below par, price volatility first increases then decreases (see the figure on p. 74).
 - Longer maturity here cannot be equated with higher price volatility.
Macaulay Duration

- The Macaulay duration (MD) is a weighted average of the times to an asset's cash flows.
- The weights are the cash flows' PVs divided by the asset's price.
- Formally,
 \[MD = \frac{1}{F} \sum_{i=1}^{n} \frac{iC_i}{(1+y)^i}. \]
- The Macaulay duration, in periods, is equal to
 \[MD = -(1+y) \frac{\partial P}{\partial y} F. \]
(7)

Finesse

- Equations (7) on p. 75 and (8) on p. 76 hold only if the coupon \(C \), the par value \(F \), and the maturity \(n \) are all independent of the yield \(y \).
- That is, if the cash flow is independent of yields.

MD of Bonds

- The MD of a coupon bond is
 \[MD = \frac{1}{F} \left[\sum_{i=1}^{n} \frac{iC_i}{(1+y)^i} + \frac{nF}{(1+y)^n} \right]. \]
(8)
- It can be simplified to
 \[MD = \frac{c(1+y)[(1+y)^n - 1] + ny(y-c)}{cy[(1+y)^n - 1] + y^2}, \]
 where \(c \) is the period coupon rate.
- The MD of a zero-coupon bond equals its term to maturity \(n \).
- The MD of a coupon bond is less than its maturity.

How Not To Think of MD

- The MD has its origin in measuring the length of time a bond investment is outstanding.
- But you use it that way at your peril.
- The MD should be seen mainly as measuring price volatility.
- Many, if not most, duration-related terminology cannot be comprehended otherwise.
Modified Duration

- Modified duration is defined as
 \[
 \text{modified duration} = -\frac{\partial P}{\partial y} \frac{1}{P} = \frac{\text{MD}}{(1+y)}. \tag{9}
 \]
- By Taylor expansion,
 percent price change \(\approx -\text{modified duration} \times \text{yield change}. \)

Example

- Consider a bond whose modified duration is 11.54 with a yield of 10%.
- If the yield increases instantaneously from 10% to 10.1%, the approximate percentage price change will be
 \[-11.54 \times 0.001 = -0.01154 = -1.154\%. \]

Modified Duration of a Portfolio

- The modified duration of a portfolio equals
 \[
 \sum_i \omega_i D_i.
 \]
- \(D_i \) is the modified duration of the \(i \)th asset.
- \(\omega_i \) is the market value of that asset expressed as a percentage of the market value of the portfolio.

Effective Duration

- Yield changes may alter the cash flow or the cash flow may be so complex that simple formulas are unavailable.
- We need a general numerical formula for volatility.
- The effective duration is defined as
 \[
 \frac{P_+ - P_-}{P_0(y_+ - y_-)},
 \]
- \(P \) is the price if the yield is decreased by \(\Delta y \).
- \(P_+ \) is the price if the yield is increased by \(\Delta y \).
- \(P_0 \) is the initial price, \(y \) is the initial yield.
- \(\Delta y \) is small.
Effective Duration (concluded)

- One can compute the effective duration of just about any financial instrument.
- Duration of a security can be longer than its maturity or negative!
- Neither makes sense under the maturity interpretation.
- An alternative is to use
 \[\frac{P_0 - P_+}{P_0 \Delta y}. \]
 - More economical but less accurate.

Meeting Liabilities

- Buy coupon bonds to meet a future liability.
- What happens at the horizon date when the liability is due?
- Say interest rates rise subsequent to the purchase:
 - The interest on interest from the reinvestment of the coupon payments will increase,
 - But a capital loss will occur for the sale of the bonds.
- The reverse is true if interest rates fall.
- Uncertainties in meeting the liability.

The Practices

- Duration is usually expressed in percentage terms—call it \(D\% \) for quick mental calculation.
- The percentage price change expressed in percentage terms is approximated by
 \[-D\% \times \Delta r \]
 when the yield increases instantaneously by \(\Delta r\% \).
 - Price will drop by 20% if \(D\% = 10 \) and \(\Delta r = 2 \) because \(10 \times 2 = 20 \).
- In fact, \(D\% \) equals modified duration as originally defined [prove it!].

Immunization

- A portfolio immunizes a liability if its value at horizon covers the liability for small rate changes now.
- A bond portfolio whose MD equals the horizon and whose PV equals the PV of the single future liability,
 - At horizon, losses from the interest on interest will be compensated by gains in the sale price when interest rates fall,
 - Losses from the sale price will be compensated by the gains in the interest on interest when interest rates rise [see figure on p. 87].
The Proof

- Assume the liability is \(L \) at time \(m \) and the current interest rate is \(y \).
- Want a portfolio such that
 1. Its FV is \(L \) at the horizon \(m \);
 2. \(\frac{\partial \text{FV}}{\partial y} = 0 \);
 3. FV is convex around \(y \).
- Condition (1) says the obligation is met.
- Conditions (2) and (3) mean \(L \) is the portfolio’s minimum FV at horizon for small rate changes.

The Proof (continued)

- Let \(\text{FV} \equiv (1 + y)^m \text{P} \), where \(\text{P} \) is the PV of the portfolio.
- Now,
 \[
 \frac{\partial \text{FV}}{\partial y} = m(1 + y)^{m-1} \text{P} + (1 + y)^m \frac{\partial \text{P}}{\partial y}.
 \]
- Imposing Condition (2) leads to
 \[
 m = -(1 + y) \frac{\partial \text{P}/\text{P}}{\partial y}.
 \]
- The MD is equal to the horizon \(m \).
The Proof (concluded)

- Employ a coupon bond for immunization.

- Since

\[FV = \sum_{i=1}^{n} \frac{C}{(1 + y)^{i-m}} + \frac{F}{(1 + y)^n}, \]

it follows that

\[\frac{\partial^2 FV}{\partial y^2} > 0 \] \hspace{1cm} (10)

for \(y > -1 \).

- Since FV is convex for \(y > -1 \), the minimum value of FV is indeed \(L \).

Hedging

- Hedging offsets the price fluctuations of the position to be hedged by the hedging instrument in the opposite direction, leaving the total wealth unchanged.

- Define dollar duration as

\[\text{modified duration} \times \text{price (\% of par)} = -\frac{\partial P}{\partial y}. \]

- The approximate dollar price change per $100 of par value is

\[\text{price change} \approx -\text{dollar duration} \times \text{yield change}. \]

Rebalancing

- Immunization has to be rebalanced constantly to ensure that the MD remains matched to the horizon.

- The MD decreases as time passes.

- But, except for zero-coupon bonds, the decrement is not identical to that in the time to maturity.
 - Consider a coupon bond whose MD matches horizon.
 - Since the bond's maturity date lies beyond the horizon date, its MD will remain positive at horizon.

- So immunization needs to be reestablished even if interest rates never change.

Convexity

- Convexity is defined as

\[\text{convexity (in periods)} = \frac{\partial^2 P}{\partial y^2} \frac{1}{P}. \]

- The convexity of a coupon bond is positive (see Eq. (10) on p. 91).

- For a bond with positive convexity, the price rises more for a rate decline than it falls for a rate increase of equal magnitude.

- Hence, between two bonds with the same duration, the one with a higher convexity is more valuable.
Use of Convexity

- The approximation $\Delta P/P \approx -\text{duration} \times \text{yield change}$ works for small yield changes.
- To improve upon it for larger yield changes, use
 \[
 \frac{\Delta P}{P} \approx \frac{\partial P}{\partial y} \frac{1}{P} \Delta y + \frac{1}{2} \frac{\partial^2 P}{\partial y^2} \frac{1}{P} (\Delta y)^2
 \]
 \[
 = -\text{duration} \times \Delta y + \frac{1}{2} \times \text{convexity} \times (\Delta y)^2.
 \]
- Recall the figure on p. 95.

Convexity (concluded)

- Convexity measured in periods and convexity measured in years are related by
 \[
 \text{convexity (in years)} = \frac{\text{convexity (in periods)}}{k^2}
 \]
 when there are k periods per annum.
- The convexity of a coupon bond increases as its coupon rate decreases.
- For a given yield and duration, the convexity decreases as the coupon decreases.

The Practices

- Convexity is usually expressed in percentage terms—call it C_p—for quick mental calculation.
- The percentage price change expressed in percentage terms is approximated by $-D_p \times \Delta r + C_p \times (\Delta r)^2/2$ when the yield increases instantaneously by $\Delta r\%$.
- Price will drop by 17% if $D_p = 10$, $C_p = 1.5$, and $\Delta r = 2$ because
 \[
 -10 \times 2 + \frac{1}{2} \times 1.5 \times 2^2 = -17.
 \]
- In fact, C_p equals convexity divided by 100 (prove it!).
Term Structure of Interest Rates

- Concerned with how interest rates change with maturity.
- The set of yields to maturity for bonds forms the term structure.
 - The bonds must be of equal quality.
 - They differ solely in their terms to maturity.
- The term structure is fundamental to the valuation of fixed-income securities.

Term Structure of Interest Rates (concluded)

- Term structure often refers exclusively to the yields of zero-coupon bonds.
- A yield curve plots yields to maturity against maturity.
- A par yield curve is constructed from bonds trading near par.
Four Shapes
- A normal yield curve is upward sloping.
- An inverted yield curve is downward sloping.
- A flat yield curve is flat.
- A humped yield curve is upward sloping at first but then turns downward sloping.

Problems with the PV Formula
- In the bond price formula,
 \[
 P = \sum_{i=1}^{n} \frac{C}{(1+y)^i} + \frac{F}{(1+y)^n},
 \]
 every cash flow is discounted at the same yield \(y \).
- Consider two riskless bonds with different yields to maturity because of their different cash flow streams,
- The yield-to-maturity methodology discounts their contemporaneous cash flows with different rates,
- But shouldn't they be discounted at the same rate?
- Enter the spot rate methodology.

Spot Rates
- The \(i \)-period spot rate \(S(i) \) is the yield to maturity of an \(i \)-period zero-coupon bond.
- The PV of one dollar \(i \) periods from now is
 \[[1 + S(i)]^{-i}. \]
- The one-period spot rate is called the short rate.
- A spot rate curve is a plot of spot rates against maturity.

Spot Rate Discount Methodology
- A cash flow \(C_1, C_2, \ldots, C_n \) is equivalent to a package of zero-coupon bonds with the \(i \)th bond paying \(C_i \) dollars at time \(i \).
- So a level-coupon bond has the price
 \[
 P = \sum_{i=1}^{n} \frac{C_i}{[1 + S(i)]^i} + \frac{F}{[1 + S(n)]^n},
 \] (11)
- This pricing method incorporates information from the term structure.
- Discount each cash flow at the corresponding spot rate.
Discount Factors

- In general, any riskless security having a cash flow \(C_1, C_2, \ldots, C_n \) should have a market price of

\[
P = \sum_{i=1}^{n} C_i d(i).
\]

- Above, \(d(i) \equiv \left[1 + S(i)\right]^{-i} \), \(i = 1, 2, \ldots, n \), are called discount factors.
- \(d(i) \) is the PV of one dollar \(i \) periods from now.
- The discount factors are often interpolated to form a continuous function called the discount function.

Extracting Spot Rates from Yield Curve (concluded)

- Inductively, we are given the market price \(P \) of the \(n \)-period coupon bond and \(S(1), S(2), \ldots, S(n-1) \).
- Then \(S(n) \) can be computed from Eq. (11), repeated below,

\[
P = \sum_{i=1}^{n} \frac{C}{\left[1 + S(i)\right]^i} + \frac{F}{\left[1 + S(n)\right]^n}.
\]

- The running time is \(O(n) \).
- The procedure is called bootstrapping.

Extracting Spot Rates from Yield Curve

- Start with the short rate \(S(1) \).
- Note that short-term Treasuries are zero-coupon bonds.
- Compute \(S(2) \) from the two period coupon bond price \(P \) by solving

\[
P = \frac{C}{1 + S(1)} + \frac{C + 100}{[1 + S(2)]^2}.
\]

Some Problems

- Treasuries of the same maturity might be selling at different yields (the multiple cash flow problem).
- Some maturities might be missing from the data points (the incompleteness problem).
- Treasuries might not be of the same quality.
- Interpolation and fitting techniques are needed in practice to create a smooth spot rate curve.
- Lack economic justifications.
Of Spot Rate Curve and Yield Curve

- y_k: yield to maturity for the k-period coupon bond.
- $S(k) \geq y_k$ if $y_1 < y_2 < \ldots$ (yield curve is normal).
- $S(k) \leq y_k$ if $y_1 > y_2 > \ldots$ (yield curve is inverted).
- $S(k) \geq y_k$ if $S(1) < S(2) < \ldots$ (spot rate curve is normal).
- $S(k) \leq y_k$ if $S(1) > S(2) > \ldots$ (spot rate curve is inverted).
- If the yield curve is flat, the spot rate curve coincides with the yield curve.

Shapes

- The spot rate curve often has the same shape as the yield curve.
- If the spot rate curve is inverted (normal, resp.), then the yield curve is inverted (normal, resp.).
- But only a trend not a mathematical truth.

Coupon Effect on the Yield to Maturity

- Under a normal spot rate curve, a coupon bond has a lower yield than a zero-coupon bond of equal maturity.
- Picking a zero-coupon bond over a coupon bond based purely on the zero’s higher yield to maturity is flawed.

Shapes (concluded)

- When the final principal payment is relatively insignificant, the spot rate curve and the yield curve do share the same shape.
 - Bonds of high coupon rates and long maturities.
- By the agreement in shape, remember the above proviso.
Forward Rates

- The yield curve contains information regarding future interest rates currently “expected” by the market.
- Invest $1 for j periods to end up with $[1 + S(j)]^j$ dollars at time j.
 - The maturity strategy.
- Invest $1 in bonds for i periods and at time i invest the proceeds in bonds for another $j - i$ periods where $j > i$.
- Will have $[1 + S(i)]^i[1 + S(i,j)]^j$ dollars at time j.
 - $S(i,j)$: $(j - i)$-period spot rate i periods from now.
 - The rollover strategy.

Forward Rates (concluded)

- When $S(i,j)$ equals
 \[
 f(i,j) = \left[\frac{(1 + S(j))^j}{(1 + S(i))^i} \right]^{1/(j - i)} - 1, \tag{12}
 \]
 we will end up with $[1 + S(j)]^j$ dollars again.
- By definition, $f(0, j) = S(j)$.
- $f(i, j)$ is called the (implied) forward rates.
 - More precisely, the $(j - i)$-period forward rate i periods from now.
Spot Rates and Forward Rates

- When the spot rate curve is normal, the forward rate dominates the spot rates,
 \[f(i, j) > S(j) > \cdots > S(i). \]
- When the spot rate curve is inverted, the forward rate is dominated by the spot rates,
 \[f(i, j) < S(j) < \cdots < S(i). \]

Forward Rates = Spot Rates = Yield Curve

- The FV of $1 at time \(n \) can be derived in two ways,
- Buy \(n \)-period zero-coupon bonds and receive \([1 + S(n)]^n \).
- Buy one period zero coupon bonds today and a series of such bonds at the forward rates as they mature,
- The FV is \([1 + S(1)](1 + f(1, 2)) \cdots [1 + f(n - 1, n)] \).

Forward Rates = Spot Rates = Yield Curve (concluded)

- Since they are identical,
 \[
 S(n) = (1 + S(1))(1 + f(1, 2))
 \cdots (1 + f(n - 1, n)))^{1/n} - 1, \quad (13)
 \]
- Hence, the forward rates, specifically the one-period forward rates, determine the spot rate curve.
- Other equivalency can be derived similarly.
- Show that \(f(T, T + 1) = d(T)/d(T + 1) = 1 \).
Locking in the Forward Rate $f(n, m)$

- Buy one n-period zero-coupon bond for $1/(1 + S(n))^n$.
- Sell $(1 + S(m))^m/(1 + S(n))^n$ m-year zero-coupon bonds.
- No net initial investment because the cash inflow equals the cash outflow $1/(1 + S(n))^n$.
- At time n there will be a cash inflow of 1.
- At time m there will be a cash outflow of $(1 + S(m))^m/(1 + S(n))^n$ dollars.
- This implies the rate $f(n,m)$ between times n and m.

Forward Contracts

- We generated the cash flow of a financial instrument called forward contract.
- Agreed upon today, it enables one to borrow money at time n in the future and repay the loan at time $m > n$ with an interest rate equal to the forward rate $f(n, m)$.
- Can the spot rate curve be an arbitrary curve?

Spot and Forward Rates under Continuous Compounding

- The pricing formula:
 $$P = \sum_{i=1}^{n} Ce^{-iS[i]} + Fe^{-nS[n]}.$$
- The market discount function:
 $$d(n) = e^{-nS(n)}.$$
- The spot rate is an arithmetic average of forward rates,
 $$S(n) = \frac{f(0,1) + f(1,2) + \ldots + f(n-1,n)}{n}.$$
Spot and Forward Rates under Continuous Compounding (continued)

- The formula for the forward rate:
 \[f(i, j) = \frac{jS(j) - iS(i)}{j - i}. \]
- The one-period forward rate:
 \[f(j, j + 1) = -\ln \frac{d(j + 1)}{d(j)}. \]
- \[f(T) \equiv \lim_{\Delta T \to 0} f(T, T + \Delta T) = S(T) + T \frac{\partial S}{\partial T}. \]
- \[f(T) > S(T) \text{ if and only if } \frac{\partial S}{\partial T} > 0. \]

Unbiased Expectations Theory and Spot Rate Curve

- Implies that a normal spot rate curve is due to the fact that the market expects the future spot rate to rise.
- Conversely, the spot rate is expected to fall if and only if the spot rate curve is inverted.

Unbiased Expectations Theory

- Forward rate equals the average future spot rate,
 \[f(a, b) = E[S(a, b)]. \]
- Does not imply that the forward rate is an accurate predictor for the future spot rate.
- Implies that the maturity strategy and the rollover strategy produce the same result at the horizon on the average.

More Implications

- The theory has been rejected by most empirical studies with the possible exception of the period prior to 1915.
- Since the term structure has been upward sloping about 80% of the time, the theory would imply that investors have expected interest rates to rise 80% of the time.
- Riskless bonds, regardless of their different maturities, are expected to earn the same return on the average.
- That would mean investors are indifferent to risk.
Local Expectations Theory

- The expected rate of return of any bond over a single period equals the prevailing one-period spot rate:
 \[
 E \left[\frac{(1 + S(1,n))^{(n-1)}}{(1 + S(n))^{n}} \right] = 1 + S(1) \quad \text{for all } n > 1.
 \]
- This theory is the basis of many interest rate models.
- Holding premium:
 \[
 E \left[\frac{(1 + S(1,n))^{(n-1)}}{(1 + S(n))^{n}} \right] - (1 + S(1)).
 \]
 - Zero under the local expectations theory.

Duration Revisited

- Let \(P(y) \equiv \sum_i C_i / (1 + S(i) + y)^i \) be the price associated with the cash flow \(C_1, C_2, \ldots \).
- Define duration as
 \[
 - \left. \frac{\partial P(y)}{\partial y} \right|_{y=0} = \sum_i \frac{C_i}{(1 + S(i) + y)^i} \times \frac{1}{(1 + S(i))^i}.
 \]
 - The curve is shifted in parallel to \(S(1) + \Delta y, S(2) + \Delta y, \ldots \) before letting \(\Delta y \) go to zero.
- The percentage price change roughly equals duration times the size of the parallel shift in the spot rate curve.

Duration Revisited (continued)

- The simple linear relation between duration and MD in Eq. (9) on p. 79 breaks down.
- One way to regain it is to resort to a different kind of shift, the proportional shift:
 \[
 \frac{\Delta (1 + S(i))}{1 + S(i)} = \frac{\Delta (1 + S(1))}{1 + S(1)}
 \]
 for all \(i \).
 - \(\Delta (x) \) denotes the change in \(x \) when the short-term rate is shifted by \(\Delta y \).

Duration Revisited (concluded)

- Duration now becomes
 \[
 \frac{1}{1 + S(1)} \left[\sum_i \frac{i C_i (1 + S(i))^i}{(1 + S(1))^i} \right].
 \]
 (15)
- Define Macaulay’s second duration to be the number within the brackets in Eq. (15).
- Then
 \[
 \text{duration} = \frac{\text{Macaulay’s second duration}}{(1 + S(1))}.
 \]
Immunization Revisited

- Recall that a future liability can be immunized by matching PV and MD under flat spot rate curves.
- If only parallel shifts are allowed, this conclusion continues to hold under general spot rate curves.
- Assume liability L is T periods from now.
- Assume $L = 1$ for simplicity.
- Assume the matching portfolio consists only of zero-coupon bonds maturing at t_1 and t_2 with $t_1 < T < t_2$.

Immunization Revisited (concluded)

- Now shift the spot rate curve uniformly by $\delta \neq 0$.
- The portfolio's PV becomes
 \[n_1 e^{(S(t_1) + \delta) t_1} + n_2 e^{(S(t_2) + \delta) t_2} = e^{\delta t_1} V(t_2 - T) + e^{\delta t_2} V(t_1 - T) \]
 \[= e^{\delta t_1} \frac{V(t_2 - T)}{t_2 - t_1} + e^{\delta t_2} \frac{V(t_1 - T)}{t_1 - t_2} \]
 \[= \frac{V}{t_2 - t_1} (e^{\delta t_1} (t_2 - T) + e^{\delta t_2} (T - t_1)) \).
- The liability's PV after shift is $e^{-(S(T) + \delta) T} = e^{-\delta TV}$.
- And $\frac{V}{t_2 - t_1} (e^{\delta t_1} (t_2 - T) + e^{\delta t_2} (T - t_1)) > e^{-\delta TV}$.

Immunization Revisited (continued)

- Let there be n_i bonds maturing at time t_i, $i = 1, 2$.
- The portfolio's PV is
 \[V \equiv n_1 e^{-S(t_1) t_1} + n_2 e^{-S(t_2) t_2} = e^{-S(T) T} \]
- Its MD is
 \[\frac{n_1 t_1 e^{S(t_1) t_1} + n_2 t_2 e^{S(t_2) t_2}}{V} = T, \]
- These two equations imply
 \[n_1 e^{S(t_1) t_1} = \frac{V(t_2 - T)}{t_2 - t_1} \quad \text{and} \quad n_2 e^{S(t_2) t_2} = \frac{V(t_1 - T)}{t_1 - t_2}. \]
Two Intriguing Implications

- A duration-matched position under parallel shifts implies free lunch as any interest rate change generates profits.
- No investors would hold the T period bond because a portfolio of t_1- and t_2-period bonds has a higher return for any interest rate shock,
 - They would own only bonds of the shortest and longest maturities.
- The logic seems impeccable,
- What gives?