Impacts of the Initial Conditions

- Different initial conditions give rise to different solutions.
- Suppose $a_0 = 1$ and $a_1 = 2$.
- Then solve

\[
1 = a_0 = c_1 + c_2,
\]
\[
2 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2},
\]
for

\[
c_1 = \frac{[(1 + \sqrt{5})/2]^2}{\sqrt{5}},
\]
\[
c_2 = -\frac{[(1 - \sqrt{5})/2]^2}{\sqrt{5}}.
\]
Impacts of the Initial Conditions (continued)

- Finally,

\[a_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+2} \] \hspace{1cm} (82)
Impacts of the Initial Conditions (continued)

- Suppose $a_0 = a_1 = 1$ instead.

- Then solve

\[
1 = a_0 = c_1 + c_2,
\]

\[
1 = a_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2},
\]

for

\[
c_1 = \left[\frac{(1 + \sqrt{5})}{2} \right]/\sqrt{5},
\]

\[
c_2 = -\left[\frac{(1 - \sqrt{5})}{2} \right]/\sqrt{5}.
\]
Impacts of the Initial Conditions (concluded)

• Finally,

\[a_n = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \] . \quad (83)

• This formula differs from Eq. (82) on p. 555.
Generating Function for the Fibonacci Relation

- From $a_{n+2} = a_{n+1} + a_n$, we obtain
 \[\sum_{n=0}^{\infty} a_{n+2}x^{n+2} = \sum_{n=0}^{\infty} \left(a_{n+1}x^{n+2} + a_nx^{n+2} \right). \]

- Let $f(x)$ be the generating function for \{ a_n \}_{n=0,1,2,...}.

- Then
 \[f(x) - a_0 - a_1x = x[f(x) - a_0] + x^2f(x). \]

- Hence
 \[f(x) = \frac{-a_0x + a_0 + a_1x}{1 - x - x^2}. \quad (84) \]
A Formula for the Fibonacci Numbers a_n

\[
\frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^n = \sum_{m=0}^{\lfloor n/2 \rfloor - 1} \binom{n - m - 1}{m}.
\]

- The generating function (84) on p. 558 gives

\[
\frac{-a_0 x + a_0 + a_1 x}{1 - x - x^2} = \frac{x}{1 - x(1 + x)} = x + x^2(1 + x) + x^3(1 + x)^2 + \cdots
\]

\[
+ x^{n-1}(1 + x)^{n-2} + x^n(1 + x)^{n-1} + \cdots
\]

\[
= \cdots + \left[\binom{n - \lfloor n/2 \rfloor}{\lfloor n/2 \rfloor - 1} + \cdots + \binom{n - 2}{1} + \binom{n - 1}{0} \right] x^n + \cdots.
\]

\[\text{aRecall that } a_0 = 0 \text{ and } a_1 = 1.\]
Binary Sequences without Consecutive 0s

- Let a_n denote the number of binary sequences of length n without consecutive 0s.

- There are a_{n-1} valid sequences with the nth symbol being 1.

- There are a_{n-2} valid sequences with the nth symbol being 0 because any such sequence must end with 10.

- Hence $a_n = a_{n-1} + a_{n-2}$, a Fibonacci sequence.

- Because $a_1 = 2$ and $a_2 = 3$, we must have $a_0 = 1$ to retrofit the Fibonacci sequence.

- The formula is Eq. (82) on p. 555.
Number of Subsets without Consecutive Numbers

• How many subsets of \(\{1, 2, \ldots, n\} \) contain no 2 consecutive integers?

• A binary sequences \(b_1 b_2 \cdots b_n \) of length \(n \) can be interpreted as the set \(\{i : b_i = 0\} \subseteq \{1, 2, \ldots, n\} \).

• So a subset of \(\{1, 2, \ldots, n\} \) without consecutive integers implies a binary sequence without consecutive 0s, and vice versa.

• Hence there are \(a_n \) subsets of \(\{1, 2, \ldots, n\} \) that contain no 2 consecutive integers, where \(a_n \) is the Fibonacci number with \(a_0 = 1 \) and \(a_1 = 2 \).\(^a\)

\(^a\)Recall p. 560.
Number of Subsets without Consecutive Numbers (continued)

• From formula (82) on p. 555,

\[a_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+2} \]

is the Fibonacci number with \(a_0 = 1 \) and \(a_1 = 2 \).

• We knew there are \(\binom{n-m+1}{m} \) \(m \)-element subsets of \(\{1, 2, \ldots, n\} \) that contain no consecutive integers.\(^a\)

\(^a\)Recall Eq. (16) on p. 95.
Number of Subsets without Consecutive Numbers (concluded)

- Hence a_n also equals

$$\sum_{m=0}^{\lfloor n/2 \rfloor} \binom{n-m+1}{m}.$$

- In summary,

$$\frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^{n+2} - \frac{1}{\sqrt{5}} \left(\frac{1 - \sqrt{5}}{2} \right)^{n+2} = \sum_{m=0}^{\lfloor n/2 \rfloor} \binom{n-m+1}{m}.$$

- We could have used the identity on p. 559 to derive it.
Number of Subsets without Cyclically Consecutive Numbers

• How many subsets of \(\{1, 2, \ldots, n\} \) contain no 2 consecutive integers when 1 and \(n \) are considered consecutive?

• Let \(a_n \) be the solution for the problem on p. 561.

• So \(a_n \) is the Fibonacci number with \(a_0 = 1 \) and \(a_1 = 2 \) (formula appeared in Eq. (82) on p. 555).

• Now assume \(n \geq 3 \) first.

• There are \(a_{n-1} \) acceptable subsets that do not contain \(n \).
Number of Subsets without Cyclically Consecutive Numbers (continued)

- If \(n \) is included, an acceptable subset cannot contain 1 or \(n - 1 \).
- Hence there are \(a_{n-3} \) such subsets.
- The total is therefore \(L_n \triangleq a_{n-1} + a_{n-3} \), the **Lucas number**.\(^a\)
- It can be easily checked that

\[
L_n = a_{n-1} + a_{n-3} \\
= a_{n-2} + a_{n-3} + a_{n-4} + a_{n-5} \\
= L_{n-1} + L_{n-2}.
\]

\(^a\)Corrected by Mr. Gong-Ching Lin (B00703082) on May 19, 2012.
Number of Subsets without Cyclically Consecutive Numbers (continued)

- Furthermore, $L_0 = 2$ and $L_1 = 1$.
 - $L_3 = a_2 + a_0 = 3 + 1 = 4$ and $L_4 = a_3 + a_1 = 5 + 2 = 7$.
 - So

\[
\begin{align*}
L_2 &= L_4 - L_3 = 3, \\
L_1 &= L_3 - L_2 = 1, \\
L_0 &= L_2 - L_1 = 2.
\end{align*}
\]
Number of Subsets without Cyclically Consecutive Numbers (continued)

- The general solution is

\[L_n = c_1 \left(\frac{1 + \sqrt{5}}{2} \right)^n + c_2 \left(\frac{1 - \sqrt{5}}{2} \right)^n \]

by Eq. (80) on p. 547.

- Solve

\[
\begin{align*}
2 &= L_0 = c_1 + c_2, \\
1 &= L_1 = c_1 \frac{1 + \sqrt{5}}{2} + c_2 \frac{1 - \sqrt{5}}{2},
\end{align*}
\]

for \(c_1 = 1 \) and \(c_2 = 1 \).
Number of Subsets without Cyclically Consecutive Numbers (concluded)

• The solution is finally

\[L_n = \left(\frac{1 + \sqrt{5}}{2} \right)^n + \left(\frac{1 - \sqrt{5}}{2} \right)^n. \]
Number of Palindromes Revisited

- A palindrome is a composition for $n \in \mathbb{Z}^+$ that reads the same left to right as right to left (p. 110).
- Let a_n denote the number of palindromes for n.
- Clearly, $a_1 = 1$ and $a_2 = 2$.
- Given each palindrome for n, we can do two things to obtain a palindrome for $n + 2$.
 - Add 1 to the first and last summands.
 * So $1 + 3 + 1$ becomes $2 + 3 + 2$.
 - Insert summand 1 to the start and end.
 * So $1 + 3 + 1$ becomes $1 + 1 + 3 + 1 + 1$.
The Proof (continued)

- This mapping is a one-to-one correspondence (why?).
- Hence
 \[a_{n+2} = 2a_n, \quad n \geq 1. \]
- The characteristic equation
 \[r^2 - 2 = 0 \]
 has two roots \(\pm \sqrt{2} \).
The Proof (continued)

• The general solution is hence

\[a_n = c_1 \left(\sqrt{2}\right)^n + c_2 \left(-\sqrt{2}\right)^n.\]

• Solve\(^a\)

\[
\begin{align*}
1 &= a_1 = \sqrt{2}\left(c_1 - c_2\right), \\
2 &= a_2 = 2\left(c_1 + c_2\right),
\end{align*}
\]

for \(c_1 = \left(1 + \frac{1}{\sqrt{2}}\right)/2\) and \(c_2 = \left(1 - \frac{1}{\sqrt{2}}\right)/2.\)

\(^a\)This time, we are not retrofitting.
The Proof (concluded)

- The number of palindromes for n therefore equals

$$
a_n = \frac{1 + \frac{1}{\sqrt{2}}}{\sqrt{2}} (\sqrt{2})^n + \frac{1 - \frac{1}{\sqrt{2}}}{\sqrt{2}} (-\sqrt{2})^n
$$

$$
= \left\{ \begin{array}{ll}
\frac{1+\frac{1}{\sqrt{2}}}{\sqrt{2}} 2^{n/2} + \frac{1-\frac{1}{\sqrt{2}}}{\sqrt{2}} 2^{n/2}, & \text{if } n \text{ is even,} \\
\frac{1+\frac{1}{\sqrt{2}}}{\sqrt{2}} \sqrt{2} 2^{(n-1)/2} - \frac{1-\frac{1}{\sqrt{2}}}{\sqrt{2}} \sqrt{2} 2^{(n-1)/2}, & \text{if } n \text{ is odd,}
\end{array} \right.
$$

$$
= \left\{ \begin{array}{ll}
2^{n/2}, & \text{if } n \text{ is even,} \\
2^{(n-1)/2}, & \text{if } n \text{ is odd,}
\end{array} \right.
$$

$$
= 2^{\left\lfloor n/2 \right\rfloor}.
$$

- It matches Theorem 20 (p. 112).
An Example: A Third-Order Relation

- Consider

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with \(a_0 = 0, \ a_1 = 1, \) and \(a_2 = 2. \)

- The characteristic equation

\[2r^3 - r^2 - 2r + 1 = 0 \]

has three distinct real roots: 1, \(-1\), and 0.5.

- The general solution is

\[a_n = c_1 1^n + c_2 (-1)^n + c_3 (1/2)^n \]

\[= c_1 + c_2 (-1)^n + c_3 (1/2)^n. \]
An Example: A Third-Order Relation (concluded)

- Solving the three initial conditions, we have\(^a\)

\[
\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & 0.5 \\
1^2 & (-1)^2 & 0.5^2
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}.
\]

- The solutions are

\[
c_1 = 2.5, \\
c_2 = 1/6, \\
c_3 = -8/3.
\]

\(^a\)Or see Eq. (79) on p. 545.
The Case of Complex Roots

- Consider

\[a_n = 2(a_{n-1} - a_{n-2}) \]

with \(a_0 = 1 \) and \(a_1 = 2 \).

- The characteristic equation

\[r^2 - 2r + 2 = 0 \]

has two distinct complex roots \(1 \pm i \).

- The general solution is

\[a_n = c_1(1 + i)^n + c_2(1 - i)^n. \]
The Case of Complex Roots (concluded)

- Solve the two initial conditions for \(c_1 = \frac{(1 - i)}{2} \) and \(c_2 = \frac{(1 + i)}{2} \).

- The particular solution becomes

\[
 a_n = (1 + i)^{n-1} + (1 - i)^{n-1} \\
 = (\sqrt{2})^n [\cos(n\pi/4) + \sin(n\pi/4)].
\]

\(^a\)An equivalent one is \(a_n = (\sqrt{2})^{n+1} \cos((n - 1)\pi/4) \) by Mr. Tunglin Wu (B00902040) on May 17, 2012.
kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients: Repeated Real Roots

- Consider the recurrence relation

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = 0, \]

where C_n, C_{n-1}, \ldots are real constants, $C_n \neq 0$, $C_{n-k} \neq 0$.

- Let r be a characteristic root of multiplicity m, where $2 \leq m \leq k$, of the characteristic equation

\[f(x) = C_n x^k + C_{n-1} x^{k-1} + \cdots + C_{n-k} = 0. \]

- The general solution that involves r has the form

\[(A_0 + A_1 n + A_2 n^2 + \cdots + A_{m-1} n^{m-1}) r^n, \quad (85) \]

with $A_0, A_1, \ldots, A_{m-1}$ are constants to be determined.
The Proof

• If $f(x)$ has a root r of multiplicity m, then

$$f(r) = f'(r) = \cdots = f^{(m-1)}(r) = 0.$$

• Because $r \neq 0$ is a root of multiplicity m, it is easy to check that

$$0 = r^{n-k}f(r),$$

$$0 = r(r^{n-k}f(r))',$$

$$0 = r(r(r^{n-k}f(r)))',$$

$$\vdots$$

$$0 = r^{m-1}(r^{n-k}f(r))^{(m-1)}'.$$

$$0 = r^{m-1}(r^{n-k}f(r))^{(m-1)}'.$$
The Proof (continued)

• Note that we differentiate and then multiply by r before iterating.

• These give

\[
0 = C_n r^n + C_{n-1} r^{n-1} + \cdots + C_{n-k} r^{n-k},
\]

\[
0 = C_n n r^n + C_{n-1} (n-1) r^{n-1} + \cdots + C_{n-k} (n-k) r^{n-k},
\]

\[
0 = C_n n^2 r^n + C_{n-1} (n-1)^2 r^{n-1} + \cdots + C_{n-k} (n-k)^2 r^{n-k},
\]

\vdots
The Proof (continued)

• Now, \(a_n = n^k r^n\), \(0 \leq k \leq m - 1\), is indeed a solution because the \(k\)th row above says

\[
0 = C_n n^k r^n + C_{n-1} (n-1)^k r^{n-1} + \cdots + C_{n-k} (n-k)^k r^{n-k} \\
= C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k}.
\]
The Proof (continued)

• From Eq. (77) on p. 540, $r^n, nr^n, n^2r^n, \ldots, n^{m-1}r^n$ form a fundamental set if

\[
\begin{vmatrix}
1 & 0 & \cdots & 0 \\
r & r & \cdots & r \\
r^2 & 2r^2 & \cdots & 2^{m-1}r^2 \\
\vdots & \vdots & \ddots & \vdots \\
r^{m-1} & (m-1)r^{m-1} & \cdots & (m-1)^{m-1}r^{m-1}
\end{vmatrix} \neq 0.
\]

• But it is a Vandermonde matrix in disguise.

\(^a\)The \(i\)th row sets \(n = i - 1, i = 1, 2, \ldots, m\).
The Proof (concluded)

• In fact, after deleting the first row and column, the determinant equals

\[(m - 1)! \cdot r^{1+2+\ldots+(m-1)}\]

\[
\begin{vmatrix}
1 & 1 & \ldots & 1 \\
1 & 2 & \ldots & 2^{m-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (m - 1) & \ldots & (m - 1)^{m-2}
\end{vmatrix} \neq 0.
\]
Nonhomogeneous Recurrence Relations

• Consider

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = f(n). \] (86)

• Suppose \(a_n = a_{n-1} + f(n) \).

• Then the solution is

\[a_n = a_0 + \sum_{i=1}^{n} f(i). \]

• A closed-form formula exists if one for \(\sum_{i=1}^{n} f(i) \) does.
Nonhomogeneous Recurrence Relations (concluded)

- In general, no failure-free methods exist except for special $f(n)$s.
 - See pp. 441–2 of the textbook (4th ed.).
 - See p. 532 of Rosen (2012) when $f(n)$ is the product of a polynomial in n and the nth power of a constant.
Examples \((c, c_1, c_2, \ldots \text{ Are Arbitrary Constants})\)

<table>
<thead>
<tr>
<th>(a_{n+1} - a_n = 0)</th>
<th>(a_n = c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{n+1} - a_n = 1)</td>
<td>(a_n = n + c)</td>
</tr>
<tr>
<td>(a_{n+1} - a_n = n)</td>
<td>(a_n = n(n - 1)/2 + c)</td>
</tr>
<tr>
<td>(a_{n+2} - 3a_{n+1} + 2a_n = 0)</td>
<td>(a_n = c_1 + c_22^n)</td>
</tr>
<tr>
<td>(a_{n+2} - 3a_{n+1} + 2a_n = 1)</td>
<td>(a_n = c_1 + c_22^n - n)</td>
</tr>
<tr>
<td>(a_{n+2} - a_n = 0)</td>
<td>(a_n = c_1 + c_2(-1)^n)</td>
</tr>
<tr>
<td>(a_{n+1} = a_n/(1 + a_n))</td>
<td>(a_n = c/(1 + cn))</td>
</tr>
</tbody>
</table>
Trial and Error

- Consider $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.
- Calculations show that $a_2 = 4$ and $a_3 = 12$.
- Conjecture:
 \[a_n = n2^{n-1}. \]
 \((87) \)
- Verify that, indeed,
 \[(n + 1)2^n = 2(n2^{n-1}) + 2^n, \]
 and $a_1 = 1$.
Application: Number of Edges of a Hasse Diagram

• Let a_n be the number of edges of the Hasse diagram for the partial order $(2\{1,2,\ldots,n\}, \subseteq)$.

• Consider the Hasse diagrams H_1 for $(2\{1,2,\ldots,n\}, \subseteq)$ and H_2 for $(\{ T \cup \{ n+1 \} : T \subseteq \{ 1, 2, \ldots, n \} \}, \subseteq)$.
 - H_1 and H_2 are “isomorphic.”

• The Hasse diagram for $(2\{1,2,\ldots,n+1\}, \subseteq)$ is constructed by adding an edge from each node T of H_1 to node $T \cup \{ n+1 \}$ of H_2.

• Hence $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.

• The desired number has been solved in Eq. (87) on p. 586.
Illustration with \((2^{\{1,2,3\}}, \subseteq)\)
Trial and Error Again

• Consider $a_{n+1} - Aa_n = B$.

• Calculations show that

 \[
 a_1 = Aa_0 + B, \\
 a_2 = Aa_1 + B = A^2a_0 + B(A + 1), \\
 a_3 = Aa_2 + B = A^3a_0 + B(A^2 + A + 1).
 \]

• Conjecture (easily verified by substitution):

 \[
 a_n = \begin{cases}
 A^n a_0 + B \frac{A^n - 1}{A - 1}, & \text{if } A \neq 1 \\
 a_0 + Bn, & \text{if } A = 1
 \end{cases} \quad (88)
 \]
Financial Application: Compound Interesta

• Consider $a_{n+1} = (1 + r) a_n$.
 – Deposit grows at a period interest rate of $r > 0$.
 – The initial deposit is a_0 dollars.

• The solution is obviously

$$a_n = (1 + r)^n a_0.$$

• The deposit therefore grows exponentially with time.

a“In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect,” wrote Joseph Alois Schumpeter (1883–1950) in \textit{Capitalism, Socialism and Democracy} (1942).
Financial Application: Amortization

- Consider \(a_{n+1} = (1 + r) a_n - M \).
 - The initial loan amount is \(a_0 \) dollars.
 - The monthly payment is \(M \) dollars.
 - The outstanding loan principal after the \(n \)th payment is \(a_n \).

- By Eq. (88) on p. 589, the solution is
 \[
 a_n = (1 + r)^n a_0 - M \frac{(1 + r)^n - 1}{r}.
 \]
The Proof (concluded)

- What is the unique monthly payment \(M \) for the loan to be closed after \(k \) monthly payments?

- Set \(a_k = 0 \) to obtain

\[
\begin{align*}
 a_k &= (1 + r)^k a_0 - M \frac{(1 + r)^k - 1}{r} = 0.
\end{align*}
\]

- Hence

\[
 M = \frac{(1 + r)^k a_0 r}{(1 + r)^k - 1}.
\]

- This is a standard formula for home mortgages and annuities.\(^a\)

\(^a\)Lyuu (2002).
Trial and Error a Third Time

• Consider the more general \(a_{n+1} - Aa_n = BC^n \).

• Calculations show that

\[
\begin{align*}
a_1 &= Aa_0 + B, \\
a_2 &= Aa_1 + BC = A^2a_0 + B(A + C), \\
a_3 &= Aa_2 + BC^2 = A^3a_0 + B(A^2 + AC + C^2).
\end{align*}
\]

• Conjecture (easily verified by substitution):

\[
a_n = \begin{cases}
 A^n a_0 + B \frac{A^n - C^n}{A - C}, & \text{if } A \neq C \\
 A^n a_0 + BA^{n-1}n, & \text{if } A = C
\end{cases}.
\] (89)
Application: Runs of Binary Strings

- A run is a maximal consecutive list of identical objects (p. 114).
 - Binary string “0 0 1 1 1 0” has 3 runs.
- Let r_n denote the total number of runs determined by the 2^n binary strings of length n.
- First, $r_1 = 2$.
 - Each of “0” and “1” has 1 run.
- Next, $r_2 = 6$.
 - “00” and “11” each has 1 run, while “01” and “10” each has 2 runs.
The Proof (continued)

• In general, suppose we append a bit to every \((n - 1)\)-bit string \(b_1 b_2 \cdots b_{n-1}\) to make \(b_1 b_2 \cdots b_{n-1} b_n\).

• First, suppose \(b_{n-1} = b_n\) (i.e., the last 2 bits are identical).

• Then the total number of runs does not change.
 – The total number of runs remains \(r_{n-1}\).
The Proof (continued)

• Next, suppose $b_{n-1} \neq b_n$ (i.e., the last 2 bits are distinct).

• Then the total number of runs increases by 1 for each $(n - 1)$-bit string.
 – There are 2^{n-1} of them.
 – So the total number of runs becomes $r_{n-1} + 2^{n-1}$.
The Proof (continued)

- Hence

\[r_n = 2r_{n-1} + 2^{n-1}, \quad n \geq 2. \]

(90)

- By Eq. (89) on p. 593,

\[r_n = 2^n r_0 + 2^{n-1} n. \]

- To make sure that \(r_1 = 2 \), it is easy to see that \(r_0 = 1/2 \).

- Hence

\[r_n = 2^{n-1} + 2^{n-1} n = 2^{n-1} (n + 1). \]
The Proof (concluded)

• The recurrence (90) is identical to that for the number of edges of a Hasse diagram (p. 587).

• But the initial condition was different: $a_1 = 1$.

• Its slightly different solution appeared in Eq. (87) on p. 586: $a_n = n2^{n-1}$.
Method of Undetermined Coefficients

• Recall Eq. (86) on p. 583, repeated below:

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = f(n). \quad (91) \]

• Let \(a_n^{(h)} \) denote the general solution of the associated homogeneous relation (with \(f(n) = 0 \)).

• Let \(a_n^{(p)} \) denote a particular solution of the nonhomogeneous relation.

• Then

\[a_n = a_n^{(h)} + a_n^{(p)}. \]

• All the entries in the table on p. 585 fit the claim.
Conditions for the General Solution

Similar to Theorem 69 (p. 540), we have the following theorem.

Theorem 70 Let $a_n^{(p)}$ be any particular solution of the nonhomogeneous recurrence relation Eq. (91) on p. 599. Let

$$a_n^{(h)} = C_1 a_n^{(1)} + C_2 a_n^{(2)} + \cdots + C_k a_n^{(k)}$$

be the general solution of its homogeneous version as specified in Theorem 69. Then $a_n^{(h)} + a_n^{(p)}$ is the general solution of Eq. (91) on p. 599.
Solution Techniques

• Typically, one finds the general solution of its homogeneous version $a_n^{(h)}$ first.

• Then one finds a particular solution $a_n^{(p)}$ of the nonhomogeneous recurrence relation Eq. (91) on p. 599.

• Make sure $a_n^{(p)}$ is “independent” of $a_n^{(h)}$.

• Finally, use the initial conditions to nail down the coefficients of $a_n^{(h)}$.

• Output $a_n^{(h)} + a_n^{(p)}$.
\[a_{n+1} - Aa_n = B \] Revisited

- Recall that the general solution is \(a_n^{(h)} = cA^n \).
- A particular solution is (verify it)
 \[
 a_n^{(p)} = \begin{cases}
 B/(1 - A), & \text{if } A \neq 1 \\
 Bn, & \text{if } A = 1
 \end{cases}
 \]
- So \(a_n = cA^n + a_n^{(p)} \).
- In particular,
 \[
 c = a_0 - a_0^{(p)} = \begin{cases}
 a_0 - B/(1 - A), & \text{if } A \neq 1 \\
 a_0, & \text{if } A = 1
 \end{cases}
 \]
\[a_{n+1} - Aa_n = B \]

Revisited (concluded)

- The solution matches Eq. (88) on p. 589.
- We can rewrite the solution as

\[
a_n = \begin{cases}
A^n [a_0 - a_n^{(p)}] + a_n^{(p)}, & \text{if } A \neq 1 \\
 a_0 + a_n^{(p)}, & \text{if } A = 1
\end{cases}
\]

\text{(92)}
Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 7^n$ with $a_0 = 2$

- $a_n^{(h)} = c \times 3^n$, because the characteristic equation has the nonzero root 3.

- We propose $a_n^{(p)} = a \times 7^n$.

- Place $a \times 7^n$ into the relation to obtain $a \times 7^n - 3a \times 7^{n-1} = 5 \times 7^n$.

- Hence $a = 35/4$ and $a_n^{(p)} = (35/4) \times 7^n = (5/4) \times 7^{n+1}$.

- The general solution is $a_n = c \times 3^n + (5/4) \times 7^{n+1}$.

- Now, $c = -27/4$ because $a_0 = 2 = c + (5/4) \times 7$.

- So the solution is $a_n = -(27/4) \times 3^n + (5/4) \times 7^{n+1}$.
Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 3^n$ with $a_0 = 2$

- As before, $a_n^{(h)} = c \times 3^n$.
- But this time $a_n^{(h)}$ and $f(n) = 5 \times 3^n$ are not "independent."
- So propose $a_n^{(p)} = an \times 3^n$.
- Plug $an \times 3^n$ into the relation to obtain $an \times 3^n - 3a(n - 1) \times 3^{n-1} = 5 \times 3^n$.
- Hence $a = 5$ and $a_n^{(p)} = 5n \times 3^n$.
- The general solution is $a_n = c \times 3^n + 5n \times 3^n$.
- Finally, $c = 2$ with use of $a_0 = 2$.

©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University
Nonhomogeneous $a_{n+1} - 2a_n = n + 1$ with $a_0 = 4$

- From Eq. (88) on p. 589, $a_n^{(h)} = c \times 2^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute this particular solution into the relation to yield
 $$a(n + 1) + b - 2(an + b) = n + 1.$$
- Rearrange the above to obtain
 $$(-a - 1)n + (a - b - 1) = 0.$$
- This holds for all n if $a = -1$ and $b = -2$.
The Proof (concluded)

• Hence \(a_n^{(p)} = -n - 2 \).
• The general solution is
 \[a_n = c \times 2^n - n - 2. \]
• Use the initial condition
 \[4 = a_0 = c - 2 \]
 to obtain \(c = 6 \).
• The solution to the complete relation is
 \[a_n = 6 \times 2^n - n - 2. \]
Nonhomogeneous $a_{n+1} - a_n = 2n + 3$ with $a_0 = 1$

• This equation is very similar to the previous one:

$$a_{n+1} - 2a_n = n + 1.$$

• First, $a_n^{(h)} = d \times 1^n = d$.

• If one guesses $a_n^{(p)} = an + b$ as before, then

$$a_{n+1} - a_n = a(n + 1) + b - an - b = a,$$

which cannot be right.\(^a\)

• So we guess $a_n^{(p)} = an^2 + bn + c$.

\(^a\)Contributed by Mr. Yen-Chieh Sung (B01902011) on June 17, 2013.
The Proof (continued)

- Substitute this particular solution into the relation to yield
 \[a(n + 1)^2 + b(n + 1) + c - (an^2 + bn + c) = 2n + 3. \]

- Simplify the above to obtain
 \[2an + (a + b) = 2n + 3. \]

- The solutions are \(a = 1 \) and \(b = 2 \).

- Hence \(a_n^{(p)} = n^2 + 2n + c \).

- The general solution is \(a_n = n^2 + 2n + c. \)

\[^{a}\text{We merge } d \text{ into } c. \]
The Proof (concluded)

• Use the initial condition

\[1 = a_0 = c \]

to obtain \(c = 1 \).

• The solution to the complete relation is

\[a_n = n^2 + 2n + 1 = (n + 1)^2. \]

• It is very different from the solution to the previous example:

\[a_n = 6 \times 2^n - n - 2. \]
Nonhomogeneous $a_{n+2} - 3a_{n+1} + 2a_n = 2$ with $a_0 = 0$ and $a_1 = 2$

- The characteristic equation $r^2 - 3r + 2 = 0$ has roots 2 and 1.
- So $a_n^{(h)} = c_1 1^n + c_2 2^n = c_1 + c_2 2^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute $a_n^{(p)}$ into the relation to yield

 $$a(n + 2) + b - 3[a(n + 1) + b] + 2(an + b) = 2.$$

- Rearrange the above to obtain $a = -2$.
- Hence $a_n^{(p)} = -2n + b$.
The Proof (concluded)

• The general solution is now \(a_n = c_1 + c_2 2^n - 2n \).\(^a\)

• Use the initial conditions

\[
0 = a_0 = c_1 + c_2, \\
2 = a_1 = c_1 + 2c_2 - 2.
\]

To obtain \(c_1 = -4 \) and \(c_2 = 4 \).

• The solution to the complete relation is

\[
a_n = -4 + 2^{n+2} - 2n.
\]

\(^a\)We merge \(b \) into \(c_1 \).
The Method of Generating Functions (Recall p. 558)

- Consider the relation \(a_n - 3a_{n-1} = n \) with \(a_0 = 1 \).
- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).
- From the recurrence equation,
 \[
 \sum_{n=1}^{\infty} a_n x^n - 3 \sum_{n=1}^{\infty} a_{n-1} x^n = \sum_{n=1}^{\infty} n x^n.
 \]
- \(f(x) - a_0 - 3xf(x) = \sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2} \) from p. 468.
- Hence
 \[
 f(x) = \frac{x}{(1-x)^2} + 1.
 \]
The Method of Generating Functions (continued)

• Now,

\[f(x) = \frac{1}{1 - 3x} + \frac{x}{(1 - x)^2(1 - 3x)} = \frac{7/4}{1 - 3x} + \frac{-1/4}{1 - x} + \frac{-1/2}{(1 - x)^2} \]

by a \textbf{partial fraction decomposition}.

– The following equivalent form is \textit{not} a partial fraction decomposition:

\[\frac{7/4}{-3x + 1} + \frac{x - 3}{(1 - x)^2}. \]
The Method of Generating Functions (continued)

• Now,

\[
\frac{7/4}{1 - 3x} = \left(\frac{7/4}{1 - 3x}\right) \sum_{n=0}^{\infty} (3x)^n,
\]

\[
-\frac{1/4}{1 - x} = -\left(\frac{1/4}{1 - x}\right) \sum_{n=0}^{\infty} x^n,
\]

\[
-\frac{1/2}{(1 - x)^2} = -\left(\frac{1/2}{(1 - x)^2}\right) \sum_{n=0}^{\infty} (n + 1) x^n,
\]

from p. 467.
The Method of Generating Functions (concluded)

• Now,

\[
f(x) = \left(\frac{7}{4}\right) \sum_{n=0}^{\infty} 3^n x^n - \left(\frac{1}{4}\right) \sum_{n=0}^{\infty} x^n - \left(\frac{1}{2}\right) \sum_{n=0}^{\infty} (n + 1) x^n.
\]

• So

\[a_n = \left(\frac{7}{4}\right) 3^n - \left(\frac{1}{4}\right) - \left(\frac{1}{2}\right)(n + 1).
\]

• The methodology should be clear.