Existence of Nodes with Identical Degree

- Let $G = (V,E)$ be a loop-free connected undirected graph with $n = |V| \geq 2$.
- Observe that $1 \leq \deg(v) \leq n - 1$.
- But there are n nodes.
- By the pigeonhole principle (p. 307), there must be 2 nodes with the same degree.
Regular Graphs

• A \textit{d-regular graph} is an undirected graph such that every node has degree \(d \).

• An \(d \)-regular graph \(G = (V, E) \) must have an even number of nodes if \(d \) is odd.
 - By Eq. (91) on p. 615, \(2 \times |E| = d \times |V| \).
 - As \(d \) is odd, \(|V| \) must be even.
The Hypercube

• The nodes of the n-dimensional hypercube Q_n are represented as n-bit numbers (see p. 555).
 – There are 2^n nodes.

• Two nodes are connected if they differ in one dimension.
 – For example, there is an edge between 00100 and 00110.
 – The diameter is n.
 – It is n-regular.
 – There are
 \[
 \frac{n2^n}{2} = n2^{n-1}
 \]
 undirected edges.
The Hypercube (concluded)

• The hypercube was once a popular topology for massively parallel processors (MPPs).

• The record is $n = 16$ set by Thinking Machine Corp.’s Connection Machine CM-2.\(^a\)

\(^a\)Hillis (1985).
Illustration with Q_3
Bipartite Graphs

• A graph $G = (V, E)$ is called bipartite if:
 - $V = V_1 \cup V_2$ and $V_1 \cap V_2 = \emptyset$.
 - Every edge is of the form $\{x, y\}$ with $x \in V_1$ and $y \in V_2$.

• Express the above bipartite graph as
 $$G = (V_1, V_2, E).$$

• If each node in V_1 is joined with every node in V_2, we have a complete bipartite graph.
 - If $|V_1| = m$ and $|V_2| = n$, the complete bipartite graph is denoted by $K_{m,n}$.
$K_{5,5}$
Bipartite Graphs (concluded)

• Let graph $G = (V, E) = (V_1, V_2, E)$ be bipartite.
• Then G has at most $|V_1| \times |V_2|$ edges.
• Let $|V| = n$, $|E| = e$, and $|V_1| = m$.
• Then $e \leq (n - m) m$, which is maximized at (1) $m = n/2$ when n is even and (2) $m = (n \pm 1)/2$ when n is odd.
• In either case,

 $e \leq (n/2)^2$.
• Hence a graph with $e > (n/2)^2$ cannot be bipartite.
Euler Circuits and Trailsa

- Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes.
 - Isolated nodes are nodes without incident edges.

- G is said to have an Euler circuit if there is a circuit in G that traverses every edge of the graph exactly once.
 - You can draw the edges without lifting the pen.

- If there is an open trail from x to y in G and this trail traverses every edge of the graph exactly once, the trail is called an Euler trail.

aEuler in 1736, the year graph theory was born.
Characterization of Having Euler Circuits

Theorem 73 (Euler (1736)) Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes. Then G has an Euler circuit if and only if G is connected and every node in G has an even degree.

- Testing if a graph is Eulerian hence is trivial.
- The proof will be constructive.
- Let $n = |E|$.
The Proof (\Rightarrow)

- Clearly G is connected.
- Each time the Euler circuit enters a non-starting node v, it must exit it before coming back again, if ever.
- This contributes a count of 2 to $\deg(v)$.
- Because every edge is traversed, $\deg(v)$ must be even.
- The Euler circuit must start from the starting node s and end at the same starting node.
- Each exit is matched by one entry.
- So $\deg(s)$ is even.
The Proof (\Leftarrow)

- The $n = 1, 2$ cases are easy, by inspection.
- Assume the result is true when there are $< n$ edges.
- If G has n edges, select a node $s \in G$ as the starting and ending node.
- Construct a circuit C from s.
 - Start from s.
 - Traverse any hitherto untraversed edge, and so on.
 - We must eventually return to s because every node has an even degree and hence the last visit to it must be an exit, except s.
The Proof (\iff) (continued)

- If C traverses every edge, we are done.
- Otherwise, remove the edges of C and isolated nodes to yield a new graph K.
- The degree of each node in K remains even.
The Proof (\iff) (continued)a

- Suppose K is connected and s is not isolated
 - Construct an Euler circuit c of K (doable by the induction hypothesis).
 - Node s is on this Euler circuit because $s \in K$ and K is connected.
 - The desired Euler circuit: Start from s and travel on C until we end at s and then traverse c until we end at s again.

aWith input from Mr. Cheng-Yu Lee (B91902103) on December 1, 2003.
The Proof (\Leftarrow) (concluded)

- Suppose K is disconnected or s is isolated.
 - Construct an Euler circuit c_i in each component of K
 (doable by the induction hypothesis).
 - Each component must have at least one node in common with C
 because originally G is connected.
 - Let s_i be the first node with which C visits c_i.\(^{\text{a}}\)
 - The desired Euler circuit: Start from s and travel on C
 until we reach s_1, traverse c_1, return to s_1, continue on C
 until we reach s_2, and so on.

\(^{\text{a}}C\) may visit many nodes of c_i. Thanks to a lively class discussion on
Constructing an Euler Circuit
Characterization of Having Euler Trails

Corollary 74 Let $G = (V, E)$ be an undirected graph or multigraph with no isolated nodes. Then G has an Euler trail if and only if G is connected and has exactly two nodes of odd degree.

- Let x, y be the two nodes of odd degree.
- Add edge $\{x, y\}$ to G.
- Construct an Euler circuit, which exists by Theorem 73.
- Remove the edge $\{x, y\}$ from the circuit to arrive at an Euler trail.
In and Out Degrees

- Let G be a directed graph.
- The **in degree** of $v \in V$ is the number of edges in G that are incident into v.
- The **out degree** of $v \in V$ is the number of edges in G that are incident from v.
 - The in and out degrees of a node may not equal.
- Similar to the definition of (undirected) regular graphs (p. 617), a directed d-regular graph is a directed graph such that every node has in-degree and out-degree d.
Characterization of Having Directed Euler Circuits

Theorem 75 Let $G = (V, E)$ be a digraph. Then G has a directed Euler circuit if and only if G is connected and the in degree equals the out degree at every node.

- Follow the same proof as Theorem 73 (p. 625).
- The only difference is that, whereas we maintained even node degrees, we now maintain the equality of in and out degrees.
Euler Circuits: Additional Remarks

- Counting the number of Euler circuits for digraphs can be solved efficiently.\(^\text{b}\)

- Counting the number of Euler circuits for undirected graphs is computationally hard—it is \#P-complete.\(^\text{c}\)

- Asymptotic formulas exist for the number of Euler circuits on \(K_n\) when \(n\) is odd.\(^\text{d}\)

\(^\text{a}\)Contributed by Mr. Eric Ruei-Min Lee (B00902106) on June 4, 2012.

\(^\text{b}\)Harary and Palmer (1973).

\(^\text{c}\)Brightwell and Winkler (2004).

\(^\text{d}\)McKay and Robinson (1995).
Planar Graphs

- A graph or multigraph G is called planar if it can be drawn in the plane with the edges intersecting only at nodes of G.

- Planarity can be tested efficiently.a

aHopcroft and Tarjan (1974).
A Planar Graph

Such a drawing of G is called an embedding of G in the plane.
Euler’s Theorema

- Let $G = (V, E)$ be a connected planar graph or multigraph with $|V| = v$ and $|E| = e$.
- Let r be the number of regions in the plane determined by a planar embedding of G.
- One of these regions has infinite area and is called the infinite region.
- Then

$$v - e + r = 2.$$ \hfill (92)

aEuler (1752).
A Planar Graph with $v = 16$, $e = 35$, $r = 21$
The Proofa

- The theorem holds if $e = 0, 1$.b

- Assume the theorem holds for any connected planar graph with e edges, where $0 \leq e \leq k$.

- Let $G = (V, E)$ be a connected planar graph with v nodes, r regions, and $e = k + 1$ edges.

- Let $\{x, y\} \in E$.

- Delete $\{x, y\}$ to obtain graph H: $G = H + \{x, y\}$.

aSee Imre Lakatos (1922–1974), Proofs and Refutations: The Logic of Mathematical Discovery (1989), for a most penetrating presentation.

bSee p. 545 of the textbook (5th ed.).
The Proof When H Is Connected

- The dotted edge on p. 642 is $\{x, y\}$.
- So H has v nodes, k edges, and $r - 1$ regions.
- H is also planar.
- The induction hypothesis applied to H says
 \[v - k + (r - 1) = 2. \]
- Hence
 \[v - (k + 1) + r = 2. \]
- The theorem is proved because G has v nodes, $e = k + 1$ edges, and r regions.
A Planar G from a Planar H
The Proof When H Is Not Connected

- The dotted edge on p. 644 is $\{x, y\}$.
- So H has v nodes, $k = e - 1$ edges, and r regions.
- H has two components H_1 and H_2, both planar.
- Let H_i have v_i nodes, e_i edges, and r_i regions.
- The induction hypothesis applied to H_i says
 \[v_i - e_i + r_i = 2.\]
- Therefore,
 \[(v_1 + v_2) - (e_1 + e_2) + (r_1 + r_2) = 4. \] (93)

\(^a\)Thanks to a lively class discussion on December 1, 2003.
A Planar G from Planar H_1 and H_2
The Proof When H Is Not Connected (concluded)

- Now,

\begin{align*}
v_1 + v_2 &= v, \\
e_1 + e_2 &= k = e - 1, \\
r_1 + r_2 &= r + 1.
\end{align*}

- Hence Eq. (93) on p. 643 becomes

\[v - (e - 1) + (r + 1) = 4. \]

- So, again, $v - e + r = 2$.
A Useful Corollary

Corollary 76 Let $G = (V, E)$ be a loop-free connected planar graph with $|V| = v$ and $|E| = e > 2$. Then

$$e \leq 3v - 6.$$

- Let there be r regions.
- Each edge is shared by ≤ 2 regions.
- The boundary of each region (including the infinite region) contains at least 3 edges (G is not a multigraph).
- Hence $2e \geq \sum_{\text{region } R} |R\text{'s boundary}| \geq 3r$.
- Euler’s theorem implies

$$2 = v - e + r \leq v - e + (2/3)e = v - (1/3)e.$$
K_5 Is Not Planar

• K_5 has $v = 5$ nodes and $e = 10$ edges.
• Suppose it is planar.
• By Corollary 76,

\[
10 = e \leq 3v - 6 = 9,
\]

a contradiction.
$K_{3,3}$ Is Not Planar

- $K_{3,3}$ has $v = 6$ nodes and $e = 9$ edges.
- Suppose it is planar.
- By Euler’s formula (92) on p. 638, the number of regions is

$$r = 2 + e - v = 5.$$
The Proof (concluded)

- But $K_{3,3}$ has no 3 nodes forming a complete subgraph.
- So the border of a region must contain at least 4 edges.
- The sum of those edges is at least $4r = 20$.
- By Eq. (91) on p. 615,
 \[
 \sum_{v \in V} \deg(v) = 2e = \sum_{\text{region } R} |R's \text{ boundary}| \geq 20,
 \]
 contradicting $e = 9$.

Kuratowski’sa Theorem

Theorem 77 (Kuratowski (1930)) A graph is nonplanar if and only if it contains a subgraph that is “homeomorphic” to either K_5 or $K_{3,3}$.

Corollary 78 (1) Shrinking any edge of a planar graph to a single node preserves planarity. (2) Shrinking any connected component of a planar graph to a single node preserves planarity.

aKasimir Kuratowski (1896–1980).
Hamiltoniana Paths and Cycles

\begin{itemize}
 \item Let \(G = (V, E) \) be a graph with \(|V| \geq 3\).

 \item A \textbf{Hamiltonian cycle} is a \textit{cycle} in \(G \) that contains every node (exactly once) in \(V \).

 \item A \textbf{Hamiltonian path} is a \textit{path} in \(G \) that contains every node (exactly once) in \(V \).

 \item Testing if \(G \) has a Hamiltonian path or cycle is computationally hard—it is NP-complete.b
\end{itemize}

aWilliam Rowan Hamilton (1805–1865).
bKarp (1972).
William Rowan Hamilton (1805–1865)
Richard Karpa (1935–)

aTuring Award (1985).
Application: Tournaments

- Let K_n^* be a directed graph with n nodes.

- If for each distinct pair x, y of nodes, either $(x, y) \in K_n^*$ or $(y, x) \in K_n^*$ but not both, then K_n^* is called a tournament.\(^a\)

- A tournament is not necessarily transitive.
 - A digraph (V, E) is transitive if
 \[
 (a, b) \in E \land (b, c) \in E \Rightarrow (a, c) \in E.
 \]

- But the next theorem says that players can be ranked in at least one way.

\(^a\)Recall p. 316.
Theorem 79 (Redei (1934)) A tournament always contains a directed Hamiltonian path.

- Let $p_m = (v_1, v_2, \ldots, v_m)$ be a path of maximum length.
- Assume $m < n = |V|$ and proceed to derive a contradiction.
- Let v be a node not on p_m.
- $(v, v_1) \notin K^*_n$ for otherwise p_m can be lengthened to $(v, v_1, v_2, \ldots, v_m)$.
- Hence $(v_1, v) \in K^*_n$.

\[\text{a}\text{Similar results appear on p. 318 and p. 353.}\]
The Proof (continued)

- If there exists a $1 < j \leq m$ such that $(v_{j-1}, v) \in K^*_n$ and $(v, v_j) \in K^*_n$, then the path $(v_1, \ldots, v_{j-1}, v, v_j, \ldots, v_m)$ is longer than p_m, a contradiction.\(^a\)

- As $(v_1, v) \in K^*_n$, we conclude that for each $1 < j \leq m$, $(v_{j-1}, v) \in K^*_n$ and $(v, v_j) \not\in K^*_n$ by induction.

\(^a\)Improved by a lively discussion on June 5, 2014.
The Proof (concluded)

- In particular, \((v, v_m) \notin K_n^*,\) so \((v_m, v) \in K_n^*.\)
- We can add \((v_m, v)\) to \(p_m\) to make it longer, a contradiction.
- Remark: Now that \(K_n^*\) is Hamiltonian, how to find a Hamiltonian path efficiently?
Graph Coloring

• Let $G = (V, E)$ be an undirected graph.

• A proper coloring of G occurs when its nodes are colored so that adjacent nodes have different colors.

• The minimum number of colors needed to color G is the chromatic number of G and is written as $\chi(G)$.

• Four colors suffice to color any planar graph.\(^a\)

\(^a\)Kenneth Appel and Wolfgang Haken (1976). Although the original proof uses a computer, a computer-generated formal proof has been given by Gonthier (2004)! This theorem was examined in 1850 by Francis Guthrie (1831–1899) and made its official birth in a letter from De-Morgan to Hamilton in 1852. Kenneth Appel (1932–2013), “Without computers, we would be stuck only proving theorems that have short proofs.”
Graph Coloring (concluded)

- The graph colorability problem for 3 colors and up is computationally hard—it is NP-complete.a

- The number of ways to color a graph on n nodes using k colors can be calculated in time $O(2^n n^{O(1)}).$ b

- $\chi(G)$ can be calculated in time $O(2.2461^n).$ c

a Karp (1972).

b Bjöklund and Husfeldt (2006).

c Bjöklund and Husfeldt (2006).
The four-color theorem says that any map can be colored with just 4 colors.
Elementary Facts

• For all $n \geq 1$, $\chi(K_n) = n$.
 - Each node is adjacent to $n - 1$ other nodes.

• If H is a subgraph of G, then $\chi(H) \leq \chi(G)$.
 - A proper coloring of G is also one of H.

• An undirected graph G is bipartite if and only if $\chi(G) \leq 2$.
 - Given a bipartite partition $V = V_1 \cup V_2$, color V_1 and V_2 with two different colors.
An Upper Bound on the Chromatic Number

Theorem 80 (Vizing (1964)) Every graph is $(\kappa + 1)$-colorable, where κ is the maximum degree of the nodes.

1: while $G(V, E)$ has uncolored nodes do
2: Pick an arbitrary uncolored $v \in V$;
3: Choose color c that is not used by v’s $\leq \kappa$ neighbors;
4: Color v with c;
5: end while
Comments on Vizing’s Theorem

• This bound is tight because $\chi(K_n) = n$ (p. 662).

• The neighbors may be colored with the same colors, so $\kappa + 1$ is not a lower bound for the chromatic number.\(^a\)

\(^a\)Contributed by Mr. Asger K. Pedersen (T02202107) on June 5, 2014.
Coloring 3-Colorable Graphs Efficiently

Theorem 81 (Wigderson (1983)) Any 3-colorable graph can be colored in polynomial time with $O(\sqrt{n})$ colors.

- Surprisingly, no one knows how to do better!\(^a\)

\(^a\)Williamson and Shmoys (2011).
Trees
I love a tree more than a man.
— Ludwig van Beethoven (1770–1827)

Most mathematicians work with calculus-type “smooth” problems, not discrete things like cleverly arranged arrays of zeros and ones.
Trees

- A **tree** is a loop-free undirected graph that is connected and contains no cycles.

- A **forest** is a loop-free undirected graph whose components are trees.

- A **spanning tree** for a connected graph \(G = (V, E) \) is a subgraph of \(G \) with the same node set \(V \) that is also a tree.\(^a\)

 - A spanning tree is computationally easy to construct.

Lemma 82 A loop-free connected undirected graph has cycles if and only if it is not a tree.

- By definition of tree.

\(^a\)Borůvka (1926).
A Tree
A Spanning Tree

The solid lines constitute the edges of a spanning tree.

An undirected graph has a spanning tree if and only if it is connected.
Properties of Trees

- If x and y are distinct nodes in a tree, then there is a unique path that connects them.
 - There is at least one such path because a tree is connected.
 - But more than one such path implies the existence of a cycle, a contradiction.
Properties of Trees (continued)

Theorem 83 *For a tree (V, E), $|V| = |E| + 1$.*

- Obviously true when $|E| = 0$ as it is a single node.
- In general, a tree with $|E| = k + 1$ edges breaks into two trees (V_1, E_1) and (V_2, E_2) by the deletion of an edge.
- By the induction hypothesis, $|V_1| = |E_1| + 1$ and $|V_2| = |E_2| + 1$.
- Hence,

\[|V| = |V_1| + |V_2| = |E_1| + |E_2| + 2 = |E| + 1. \]
Properties of Trees (continued)

- Theorem 82 (p. 672) may hold for nontrees.
- Consider the following graph:
- It satisfies Theorem 82.
- But the graph is not connected.
Properties of Trees (concluded)

The following statements are equivalent for a loop-free undirected graph $G = (V, E)$.

1. G is a tree.

2. G is connected, but the removal of any edge disconnects G into two subgraphs that are trees.

4. G is connected, and $|V| = |E| + 1$.

5. G contains no cycles, and if $x, y \in V$ with $\{x, y\} \notin E$, then the graph obtained by adding edge $\{x, y\}$ to G has precisely one cycle.
Trees and Forests

Corollary 84 For a forest \((V, E)\), \(|V| = |E| + \kappa\), where \(\kappa\) is the number of trees in the forest.

- From Theorem 82 (p. 672), \(|V_i| = |E_i| + 1\) for each tree in the forest.
- Hence

\[
|V| = \sum_{i=1}^{\kappa} |V_i| = \sum_{i=1}^{\kappa} (|E_i| + 1) = |E| + \kappa.
\]
Trees and Cycles

Corollary 85 If a loop-free connected undirected graph is not a tree, then $|V| < |E| + 1$.

- Suppose $|V| \geq |E| + 1$ instead.
- Because the graph is not a tree, $|V| > |E| + 1$ by Property 4 on p. 674.
- But then the graph cannot be connected (why?), a contradiction.
Trees Have the Most Nodes

Corollary 86 Among loop-free connected undirected graphs, trees have more nodes than nontrees.

- Consider a graph with m edges.
- From Corollary 85 (p. 676), a nontree must have $\leq m$ nodes.
- But Theorem 82 (p. 672) says that a tree with m edges has $m + 1$ nodes.
Coloring of Trees

Theorem 87 Every tree is 2-colorable.

- Pick any node \(v \).
- Color any node reachable from \(v \) via an odd number of edges red.
- Color any node reachable from \(v \) via an even number of edges blue.
- Because a tree has no cycles (Lemma 84 on p. 676), the above operations will not contradict each other at any node.
Planarity of Trees

Lemma 88 Trees are planar.

- A tree contains no cycles.
- So it cannot contain a subgraph homeomorphic to either $K_{3,3}$ or K_5.
- The lemma follows by Kuratowski’s theorem (p. 650).
Theorem 82 (p. 672) Reproved

- As a tree (V, E) is planar by Lemma 88 (p. 679), Euler’s theorem (p. 638) says $|V| - |E| + 1 = 2$.

- But this is exactly what Theorem 82 says,

 \[|V| = |E| + 1. \]
Rooted Trees

• Let G be a directed graph.

• G is called a **directed tree** if the undirected graph associated with G is a tree.

• A directed tree G is called a **rooted tree** if there is a unique node r, called the root, with an in degree of zero and for all other nodes v, the in degree of v is 1.

• A node with an out degree of zero is called a **leaf**.

• Non-leaf nodes are called **internal** nodes.

• The **level number** of a node in a rooted tree is the length of the path from the root to that node.
• The level number of x is 4.

• Don’t ask me why computer scientists plant their trees upside down.
Binary Trees and Beyond

- A rooted tree is called a **binary tree** if the out degree of each node is 0, 1, or 2.
- A rooted tree is called a **complete binary tree** if the out degree of each node is 0 or 2.
- A rooted tree is called an **m-ary tree** if the out degree of each node is at most m.
- An m-ary tree is called a **complete m-ary tree** if the out degree of each node is 0 or m.
A Complete Binary Tree

root
Properties of Complete m-Ary Trees

Theorem 89 Let T be a complete m-ary tree with n nodes, \(\ell \) leaves, and i internal nodes. Then

1. \(n = mi + 1 \).
2. \(\ell = (m - 1)i + 1 \).
3. \(i = (\ell - 1)/(m - 1) = (n - 1)/m. \)

- Need to remove m leaves to “expose” one internal node.
- Now inductively, $n - m = m(i - 1) + 1$, proving property 1.
- Observe that $\ell = n - i = mi + 1 - i = (m - 1)i + 1$.
- Property 3 merely restates properties 1 and 2.
A Numerical Example Based on p. 684

• There, \(m = 2 \), \(n = 11 \), \(\ell = 6 \), and \(i = 5 \).

• We verify the three properties of Theorem 89 below.
 \[n = mi + 1: \quad 11 = 2 \times 5 + 1. \]
 \[\ell = (m - 1)i + 1: \quad 6 = (2 - 1) \times 5 + 1. \]
 \[i = (\ell - 1)/(m - 1) = (n - 1)/m: \]
 \[5 = (6 - 1)/(2 - 1) = (11 - 1)/2. \]

• All are satisfied.
A Corollary for Complete Binary Trees

Corollary 90 Let T be a complete binary tree with ℓ leaves and i internal nodes. Then $i = \ell - 1 = (n - 1)/2$.

- Apply Theorem 89(3) (p. 685) with $m = 2$.
Additional Properties of Complete Trees

Theorem 91 Let T be a complete m-ary tree with n nodes and ℓ leaves. Then

1. $n = (m\ell - 1)/(m - 1)$.
2. $\ell = [(m - 1)n + 1]/m$.

- Let i be the number internal nodes.
- From Theorem 89(1) (p. 685), $n = mi + 1$.
- From Theorem 89(3) (p. 685), $i = (\ell - 1)/(m - 1)$.
- Combine the two to obtain

$$n = m[(\ell - 1)/(m - 1)] + 1 = (m\ell - 1)/(m - 1).$$
Of Height and Balance

• Let T be a rooted tree.

• If h is the largest level number achieved by a leaf of T, then T is said to have **height** h.

 – The tree on p. 682 has height 4.

• A rooted tree of height h is said to be **balanced** if the level number of every leaf is $h - 1$ or h.
Maximum Height of Binary Trees

Lemma 92 The maximum height of a rooted binary tree with \(n \) nodes is \(n - 1 \).

- A rooted binary tree achieves the maximum height when it forms a line.
- A line with \(n \) nodes has a length of \(n - 1 \).
- The result holds for rooted \(m \)-ary trees as well.\(^a\)

\(^a\)Contributed by Mr. Asger K. Pedersen (T02202107) on June 5, 2014.
Height and Number of Leaves

Theorem 93 Consider a complete \(m \)-ary tree of height \(h \) with \(\ell \) leaves. Then \(\ell \leq m^h \) (equivalently, \(h \geq \lceil \log_m \ell \rceil \)).

- True when \(h = 1 \) as \(T \) is a tree with a root and \(\ell = m \) leaves.
- Assume the theorem holds for trees of height less than \(h \).
- Consider a tree with height \(h \) and \(\ell \) leaves.
The Proof (concluded)

- It has \(m \) subtrees \(T_1, T_2, \ldots, T_m \) at each of the children of the root.
- Let \(\ell_i \) be \(T_i \)'s number of leaves and \(h_i \leq h - 1 \) be \(T_i \)'s height.
- \(\ell_i \leq m^{h_i} \leq m^{h-1} \) by the induction hypothesis.
- So \(\ell = \ell_1 + \ell_2 + \cdots + \ell_m \leq m(m^{h-1}) = m^h \).
Height and Number of Leaves of Balanced Trees

Corollary 94 Consider a balanced complete m-ary tree with ℓ leaves. Then its height h equals $\lceil \log_m \ell \rceil$.

- $\ell \leq m^h$ by Theorem 93 (p. 691).
- $m^{h-1} < \ell$ because there are already m^{h-1} nodes with a level number of $h-1$.
- Hence
 $\lceil \log_m \ell \rceil \leq h < \log_m \ell + 1 \leq \lceil \log_m \ell \rceil + 1$.
- As h must be an integer, $h = \lceil \log_m \ell \rceil$.