Number of Palindromes Revisited

- A palindrome is a composition for $m \in \mathbb{Z}^+$ that reads the same left to right as right to left (p. 107).

- Let a_n denote the number of palindromes for n.

- Clearly, $a_1 = 1$ and $a_2 = 2$.

- Given each palindrome for n, we can do two things.
 - Add 1 to the first and last summands to obtain a palindrome for $n + 2$.
 * So $1 + 3 + 1$ becomes $2 + 3 + 2$.
 - Insert summand 1 to the start and end to obtain a palindrome for $n + 2$.
 * So $1 + 3 + 1$ becomes $1 + 1 + 3 + 1 + 1$.
The Proof (continued)

• Hence $a_{n+2} = 2a_n$, $n \geq 1$.

• The characteristic equation $r^2 - 2 = 0$ has two roots $\pm \sqrt{2}$.

• The general solution is hence

$$a_n = c_1(\sqrt{2})^n + c_2(-\sqrt{2})^n.$$

• Solve\(^a\)

\[
\begin{align*}
1 &= a_1 = \sqrt{2} \left(c_1 - c_2\right), \\
2 &= a_2 = 2 \left(c_1 + c_2\right), \\
\end{align*}
\]

for $c_1 = (1 + \frac{1}{\sqrt{2}})/2$ and $c_2 = (1 - \frac{1}{\sqrt{2}})/2$.

\(^a\)This time, we are not retrofitting.
The Proof (concluded)

• The number of palindromes for n therefore equals

\[
a_n = \frac{1 + \frac{1}{\sqrt{2}}}{2} (\sqrt{2})^n + \frac{1 - \frac{1}{\sqrt{2}}}{2} (-\sqrt{2})^n
\]

\[
= \begin{cases}
\frac{1+\frac{1}{\sqrt{2}}}{2} 2^{n/2} + \frac{1-\frac{1}{\sqrt{2}}}{2} 2^{n/2}, & \text{if } n \text{ is even,} \\
\frac{1+\frac{1}{\sqrt{2}}}{2} \sqrt{2} 2^{(n-1)/2} - \frac{1-\frac{1}{\sqrt{2}}}{2} \sqrt{2} 2^{(n-1)/2}, & \text{if } n \text{ is odd,}
\end{cases}
\]

\[
= \begin{cases}
2^{n/2}, & \text{if } n \text{ is even,} \\
2^{(n-1)/2}, & \text{if } n \text{ is odd,}
\end{cases}
\]

\[
= 2^{\lfloor n/2 \rfloor}.
\]

• This matches Theorem 21 (p. 109).
An Example: A Third-Order Relation

- Consider

\[2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n \]

with \(a_0 = 0, \ a_1 = 1, \) and \(a_2 = 2. \)

- The characteristic equation \(2r^3 - r^2 - 2r + 1 = 0 \) has three distinct real roots: 1, -1, and 0.5.

- The general solution is

\[
a_n = c_1 1^n + c_2 (-1)^n + c_3 (1/2)^n
\]

\[
= c_1 + c_2 (-1)^n + c_3 (1/2)^n.
\]
An Example: A Third-Order Relation (concluded)

- Solving the three initial conditions, we have\(^a\)

\[
\begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & 0.5 \\
1^2 & (-1)^2 & 0.5^2
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}.
\]

- The solutions are \(c_1 = 2.5\), \(c_2 = 1/6\), and \(c_3 = -8/3\).

\(^a\)Or see Eq. (75) on p. 516.
The Case of Complex Roots

- Consider
 \[a_n = 2(a_{n-1} - a_{n-2}) \]
 with \(a_0 = 1 \) and \(a_1 = 2 \).

- The characteristic equation \(r^2 - 2r + 2 = 0 \) has two distinct complex roots \(1 \pm i \).

- The general solution is
 \[a_n = c_1(1 + i)^n + c_2(1 - i)^n. \]
The Case of Complex Roots (concluded)

• Solve the two initial conditions for $c_1 = (1 - i)/2$ and $c_2 = (1 + i)/2$.

• The particular solution becomes\(^{a}\)

\[
a_n = (1 + i)^{n-1} + (1 - i)^{n-1}
\]
\[
= (\sqrt{2})^n [\cos(n\pi/4) + \sin(n\pi/4)].
\]

\(^{a}\)An equivalent one is $a_n = (\sqrt{2})^{n+1} \cos((n - 1)\pi/4)$ by Mr. Tunglin Wu (B00902040) on May 17, 2012.
kth-Order Linear Homogeneous Recurrence Relations with Constant Coefficients: Repeated Real Roots

• Consider the recurrence relation

$$C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = 0,$$

where C_n, C_{n-1}, \ldots are real constants, $C_n \neq 0$, $C_{n-k} \neq 0$.

• Let r be a characteristic root of multiplicity m, where $2 \leq m \leq k$, of the characteristic equation

$$f(x) = C_n x^k + C_{n-1} x^{k-1} + \cdots + C_{n-k} = 0.$$

• The general solution that involves r has the form

$$(A_0 + A_1 n + A_2 n^2 + \cdots + A_{m-1} n^{m-1}) r^n,$$ \hspace{1cm} (81)

with $A_0, A_1, \ldots, A_{m-1}$ are constants to be determined.
The Proof

• If \(f(x) \) has a root \(r \) of multiplicity \(m \), then
 \[
 f(r) = f'(r) = \cdots = f^{(m-1)}(r) = 0.
 \]

• Because \(r \neq 0 \) is a root of multiplicity \(m \), it is easy to check that

\[
0 = r^{n-k} f(r),
\]
\[
0 = r (r^{n-k} f(r))',
\]
\[
0 = r (r (r^{n-k} f(r))')',
\]
\[
\vdots
\]
\[
0 = \overbrace{r (\cdots r (r^{n-k} f(r))')'}^{m-1} \cdots \overbrace{r^{m-1}}^{m-1}'.
\]
The Proof (continued)

• Note that we differentiate and then multiply by \(r \) before iterating.

• These give

\[
0 = C_n r^n + C_{n-1} r^{n-1} + \cdots + C_{n-k} r^{n-k},
\]
\[
0 = C_n n r^n + C_{n-1} (n-1) r^{n-1} + \cdots + C_{n-k} (n-k) r^{n-k},
\]
\[
0 = C_n n^2 r^n + C_{n-1} (n-1)^2 r^{n-1} + \cdots + C_{n-k} (n-k)^2 r^{n-k},
\]
\[
\vdots
\]
The Proof (continued)

- Now, \(a_n = n^k r^n \), \(0 \leq k \leq m - 1 \), is indeed a solution because the \(k \)th row above says

\[
0 = C_n n^k r^n + C_{n-1} (n-1)^k r^{n-1} + \cdots + C_{n-k} (n-k)^k r^{n-k}
\]

\[
= C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k}.
\]
The Proof (continued)

- From Eq. (73) on p. 511, $r^n, nr^n, n^2r^n, \ldots, n^{m-1}r^n$ form a fundamental set if

\[
\begin{vmatrix}
1 & 0 & \cdots & 0 \\
r & r & \cdots & r \\
r^2 & 2r^2 & \cdots & 2^{m-1}r^2 \\
\vdots & \vdots & \ddots & \vdots \\
r^{m-1} & (m-1)r^{m-1} & \cdots & (m-1)^{m-1}r^{m-1}
\end{vmatrix} \neq 0.
\]

- But it is a Vandermonde matrix in disguise.

\(^a\)The \(i\)th row sets \(n = i - 1, i = 1, 2, \ldots, m.\)
The Proof (concluded)

• In fact, after deleting the first row and column, the determinant equals

\[(m - 1)! r^{1+2+\cdots+(m-1)} \]

\[
\begin{vmatrix}
1 & 1 & \cdots & 1 \\
1 & 2 & \cdots & 2^{m-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & (m - 1) & \cdots & (m - 1)^{m-2}
\end{vmatrix} \neq 0.
\]
Nonhomogeneous Recurrence Relations

• Consider

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = f(n). \] \hspace{1cm} (82)

• If \(a_n = a_{n-1} + f(n) \), then the solution is

\[a_n = a_0 + \sum_{i=1}^{n} f(i). \]

 – A closed-form formula exists if one for \(\sum_{i=1}^{n} f(i) \)
 does.
Nonhomogeneous Recurrence Relations (concluded)

• In general, no failure-free methods exist except for specific $f(n)$s.
 – See pp. 441–2 of the textbook (4th ed.).
 – See p. 532 of Rosen (2012) when $f(n)$ is the product of a polynomial in n and the nth power of a constant.
Examples \((c, c_1, c_2, \ldots \text{ Are Arbitrary Constants})\)

<table>
<thead>
<tr>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{n+1} - a_n = 0)</td>
<td>(a_n = c)</td>
</tr>
<tr>
<td>(a_{n+1} - a_n = 1)</td>
<td>(a_n = n + c)</td>
</tr>
<tr>
<td>(a_{n+1} - a_n = n)</td>
<td>(a_n = n(n - 1)/2 + c)</td>
</tr>
<tr>
<td>(a_{n+2} - 3a_{n+1} + 2a_n = 0)</td>
<td>(a_n = c_1 + c_22^n)</td>
</tr>
<tr>
<td>(a_{n+2} - 3a_{n+1} + 2a_n = 1)</td>
<td>(a_n = c_1 + c_22^n - n)</td>
</tr>
<tr>
<td>(a_{n+2} - a_n = 0)</td>
<td>(a_n = c_1 + c_2(-1)^n)</td>
</tr>
<tr>
<td>(a_{n+1} = a_n/(1 + a_n))</td>
<td>(a_n = c/(1 + cn))</td>
</tr>
</tbody>
</table>
Trial and Error

- Consider $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.
- Calculations show that $a_2 = 4$ and $a_3 = 12$.
- Conjecture:
 \[a_n = n2^{n-1}. \] (83)
- Verify that, indeed,
 \[(n + 1)2^n = 2(n2^{n-1}) + 2^n, \]
 and $a_1 = 1$.
Application: Number of Edges of a Hasse Diagram

- Let a_n be the number of edges of the Hasse diagram for the partial order $(2\{1,2,\ldots,n\}, \subseteq)$.

- Consider the Hasse diagrams H_1 for $(2\{1,2,\ldots,n\}, \subseteq)$ and H_2 for $\left(\{T \cup \{n+1\} : T \subseteq \{1, 2, \ldots, n\}\}, \subseteq\right)$.
 - H_1 and H_2 are “isomorphic.”

- The Hasse diagram for $(2\{1,2,\ldots,n+1\}, \subseteq)$ is constructed by adding an edge from each node T of H_1 to node $T \cup \{n+1\}$ of H_2.

- Hence $a_{n+1} = 2a_n + 2^n$ with $a_1 = 1$.

- The desired number has been solved in Eq. (83) on p. 551.
Illustration with \((2^{\{1,2,3\}}, \subseteq) \)
Trial and Error Again

- Consider \(a_{n+1} - Aa_n = B \).

- Calculations show that

\[
\begin{align*}
a_1 &= Aa_0 + B, \\
a_2 &= Aa_1 + B = A^2a_0 + B(A + 1), \\
a_3 &= Aa_2 + B = A^3a_0 + B(A^2 + A + 1).
\end{align*}
\]

- Conjecture (easily verified by substitution):

\[
a_n = \begin{cases}
A^n a_0 + B \frac{A^{n-1}}{A-1}, & \text{if } A \neq 1 \\
a_0 + Bn, & \text{if } A = 1.
\end{cases}
\] (84)
Financial Application: Compound Interest

- Consider \(a_{n+1} = (1 + r) a_n \).
 - Deposit grows at a period interest rate of \(r > 0 \).
 - The initial deposit is \(a_0 \) dollars.

- The solution is obviously
 \[
 a_n = (1 + r)^n a_0.
 \]

- The deposit therefore grows exponentially with time.

\(^a\)“In the fifteenth century mathematics was mainly concerned with questions of commercial arithmetic and the problems of the architect,” wrote Joseph Alois Schumpeter (1883–1950) in *Capitalism, Socialism and Democracy* (1942).
Financial Application: Amortization

• Consider \(a_{n+1} = (1 + r) a_n - M. \)

 – The initial loan amount is \(a_0 \) dollars.

 – The monthly payment is \(M \) dollars.

 – The outstanding loan principal after the \(n \)th payment is \(a_n \).

• By Eq. (84) on p. 554, the solution is

\[
a_n = (1 + r)^n a_0 - M \frac{(1 + r)^n - 1}{r}.
\]
The Proof (concluded)

• What is the unique monthly payment M for the loan to be closed after k monthly payments?

• Set $a_k = 0$ to obtain

$$a_k = (1 + r)^k a_0 - M \frac{(1 + r)^k - 1}{r} = 0.$$

• Hence

$$M = \frac{(1 + r)^k a_0 r}{(1 + r)^k - 1}.$$

• This is standard calculation for home mortgages and annuities.\(^a\)

\(^a\)Lyuu (2002).
Trial and Error a Third Time

• Consider the more general \(a_{n+1} - Aa_n = BC^n \).

• Calculations show that

\[
\begin{align*}
a_1 &= Aa_0 + B, \\
a_2 &= Aa_1 + BC = A^2a_0 + B(A + C), \\
a_3 &= Aa_2 + BC^2 = A^3a_0 + B(A^2 + AC + C^2).
\end{align*}
\]

• Conjecture (easily verified by substitution):

\[
a_n = \begin{cases}
A^n a_0 + B \frac{A^n - C^n}{A - C} & \text{if } A \neq C \\
A^n a_0 + BA^{n-1}n & \text{if } A = C
\end{cases}.
\]

(85)
Application: Runs of Binary Strings

• A run is a maximal consecutive list of identical objects (p. 111).
 – Binary string “0 0 1 1 1 0” has 3 runs.

• Let r_n denote the total number of runs determined by the 2^n binary strings of length n.

• First, $r_1 = 2$.
 – Each of “0” and “1” has 1 run.

• In general, suppose we append a bit to every $(n - 1)$-bit string $b_1b_2\cdots b_{n-1}$ to make $b_1b_2\cdots b_{n-1}b_n$.
The Proof (continued)

• For those with $b_{n-1} = b_n$ (i.e., the last 2 bits are identical), the total number of runs does not change.
 – The total number of runs remains r_{n-1}.

• For those with $b_{n-1} \neq b_n$ (i.e., the last 2 bits are distinct), the total number of runs increases by 1 for each $(n - 1)$-bit string.
 – There are 2^{n-1} of them.
 – So the total number of runs becomes $r_{n-1} + 2^{n-1}$.

• Hence

$$r_n = 2r_{n-1} + 2^{n-1}, n \geq 2.$$
The Proof (concluded)

• By Eq. (85) on p. 558,

\[r_n = 2^n r_0 + 2^{n-1} n. \]

• To make sure that \(r_1 = 2 \), it is easy to see that \(r_0 = 1/2 \).

• Hence

\[r_n = 2^{n-1} + 2^{n-1} n = 2^{n-1}(n + 1). \]

 – The recurrence is identical to that for the number of edges of a Hasse diagram (p. 552) except for the initial condition.

 – Its slightly different solution appeared in Eq. (83) on p. 551, \(a_n = n2^{n-1} \).
Method of Undetermined Coefficients

• Recall Eq. (82) on p. 548, repeated below:

\[C_n a_n + C_{n-1} a_{n-1} + \cdots + C_{n-k} a_{n-k} = f(n). \] \hspace{1cm} (86)

• Let \(a_n^{(h)} \) denote the general solution of the associated homogeneous relation (with \(f(n) = 0 \)).

• Let \(a_n^{(p)} \) denote a particular solution of the nonhomogeneous relation.

• Then

\[a_n = a_n^{(h)} + a_n^{(p)}. \]

• All the entries in the table on p. 550 fit the claim.
Conditions for the General Solution

Similar to Theorem 69 (p. 511), we have the following theorem.

Theorem 70 Let \(a_n^{(p)} \) be any particular solution of the nonhomogeneous recurrence relation Eq. (86) on p. 562. Let

\[
a_n^{(h)} = C_1 a_n^{(1)} + C_2 a_n^{(2)} + \cdots + C_k a_n^{(k)}
\]

be the general solution of its homogeneous version as specified in Theorem 69. Then \(a_n^{(h)} + a_n^{(p)} \) is the general solution of Eq. (86) on p. 562.
Solution Techniques

- Typically, one finds the general solution of its homogeneous version $a_n^{(h)}$ first.
- Then one finds a particular solution $a_n^{(p)}$ of the nonhomogeneous recurrence relation Eq. (86) on p. 562.
- Make sure $a_n^{(p)}$ is “independent” of $a_n^{(h)}$.
- Finally, use the initial conditions to nail down the coefficients of $a_n^{(h)}$.
- Output $a_n^{(h)} + a_n^{(p)}$.
\[a_{n+1} - Aa_n = B \ 	ext{Revisited} \]

- Recall that the general solution is \(a_n^{(h)} = cA^n \).
- A particular solution is
 \[
 a_n^{(p)} = \begin{cases}
 B/(1-A) & \text{if } A \neq 1 \\
 Bn & \text{if } A = 1
 \end{cases}.
 \]
- So \(a_n = cA^n + a_n^{(p)} \).
- In particular,
 \[
 c = a_0 - a_0^{(p)} = \begin{cases}
 a_0 - B/(1-A) & \text{if } A \neq 1 \\
 a_0 & \text{if } A = 1
 \end{cases}.
 \]
\(a_{n+1} - Aa_n = B \) Revisited (concluded)

- The solution matches Eq. (84) on p. 554.
- We can rewrite the solution as

\[
a_n = \begin{cases}
 A^n [a_0 - a_n^{(p)}] + a_n^{(p)}, & \text{if } A \neq 1 \\
 a_0 + a_n^{(p)}, & \text{if } A = 1
\end{cases} \quad (87)
\]
Nonhomogeneous $a_n - 3a_{n-1} = 5 \times 7^n$ with $a_0 = 2$

- $a_n^{(h)} = c \times 3^n$, because the characteristic equation has the nonzero root 3.

- We propose $a_n^{(p)} = a \times 7^n$.

- Place $a \times 7^n$ into the relation to obtain
 $$a \times 7^n - 3a \times 7^{n-1} = 5 \times 7^n.$$

- Hence $a = 35/4$ and $a_n^{(p)} = (35/4) \times 7^n = (5/4) \times 7^{n+1}$.

- The general solution is $a_n = c \times 3^n + (5/4) \times 7^{n+1}$.

- Now, $c = -27/4$ because $a_0 = 2 = c + (5/4) \times 7$.

- So the solution is $a_n = -(27/4) \times 3^n + (5/4) \times 7^{n+1}$.
Nonhomogeneous \(a_n - 3a_{n-1} = 5 \times 3^n \) with \(a_0 = 2 \)

- As before, \(a_n^{(h)} = c \times 3^n \).
- But this time \(a_n^{(h)} \) and \(f(n) = 5 \times 3^n \) are not “independent.”
- So propose \(a_n^{(p)} = an \times 3^n \).
- Plug \(an \times 3^n \) into the relation to obtain
\[
an \times 3^n - 3a(n - 1) \times 3^{n-1} = 5 \times 3^n.
\]
- Hence \(a = 5 \) and \(a_n^{(p)} = 5n \times 3^n \).
- The general solution is \(a_n = c \times 3^n + 5n \times 3^n \).
- Finally we find that \(c = 2 \) with use of \(a_0 = 2 \).
Nonhomogeneous $a_{n+1} - 2a_n = n + 1$ with $a_0 = 4$

- From Eq. (84) on p. 554, $a_n^{(h)} = c \times 2^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute this particular solution into the relation to yield
 \[a(n + 1) + b - 2(an + b) = n + 1. \]
- Rearrange the above to obtain
 \[(-a - 1)n + (a - b - 1) = 0. \]
- This holds for all n if $a = -1$ and $b = -2$.

© 2015 Prof. Yuh-Dauh Lyuu, National Taiwan University
The Proof (concluded)

• Hence $a_n^{(p)} = -n - 2$.

• The general solution is

$$a_n = c \times 2^n - n - 2.$$

• Use the initial condition

$$4 = a_0 = c - 2$$

to obtain $c = 6$.

• The solution to the complete relation is

$$a_n = 6 \times 2^n - n - 2.$$
Nonhomogeneous $a_{n+1} - a_n = 2n + 3$ with $a_0 = 1$

- This equation is very similar to the previous one: $a_{n+1} - 2a_n = n + 1$.

- First, $a_n^{(h)} = d \times 1^n = d$.

- If one guesses $a_n^{(p)} = an + b$ as before, then

 $$a_{n+1} - a_n = a(n + 1) + b - an - b = a,$$

 which cannot be right.\(^a\)

- So we guess $a_n^{(p)} = an^2 + bn + c$.

\(^a\)Contributed by Mr. Yen-Chieh Sung (B01902011) on June 17, 2013.
The Proof (continued)

- Substitute this particular solution into the relation to yield

\[a(n + 1)^2 + b(n + 1) + c - (an^2 + bn + c) = 2n + 3. \]

- Simplify the above to obtain

\[2an + (a + b) = 2n + 3. \]

- Hence \(a = 1 \) and \(b = 2. \)
- Hence \(a_n^{(p)} = n^2 + 2n + c. \)
- The general solution is \(a_n = n^2 + 2n + c. \)

\(^{\text{aWe merge } d \text{ into } c.}\)
The Proof (concluded)

- Use the initial condition

\[1 = a_0 = c \]

to obtain \(c = 1 \).

- The solution to the complete relation is

\[a_n = n^2 + 2n + 1 = (n + 1)^2. \]

- It is very different from the solution to the previous example: \(a_n = 6 \times 2^n - n - 2 \).
Nonhomogeneous $a_{n+2} - 3a_{n+1} + 2a_n = 2$ with $a_0 = 0$ and $a_1 = 2$

- The characteristic equation $r^2 - 3r + 2 = 0$ has roots 2 and 1.
- So $a_n^{(h)} = c_1 1^n + c_2 2^n = c_1 + c_2 2^n$.
- Guess $a_n^{(p)} = an + b$.
- Substitute $a_n^{(p)}$ into the relation to yield

$$a(n + 2) + b - 3[a(n + 1) + b] + 2(an + b) = 2.$$

- Rearrange the above to obtain $a = -2$.
- Hence $a_n^{(p)} = -2n + b$.
The Proof (concluded)

• The general solution is now \(a_n = c_1 + c_2 2^n - 2n \).\(^a\)

• Use the initial conditions

\[
0 = a_0 = c_1 + c_2, \\
2 = a_1 = c_1 + 2c_2 - 2.
\]

to obtain \(c_1 = -4 \) and \(c_2 = 4 \).

• The solution to the complete relation is

\[
a_n = -4 + 2^{n+2} - 2n.
\]

\(^a\)We merge \(b \) into \(c_1 \).
The Method of Generating Functions (Recall p. 524)

• Consider the relation \(a_n - 3a_{n-1} = n\) with \(a_0 = 1\).

• Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n\) be the generating function for \(a_0, a_1, \ldots\).

• From the recurrence equation,

\[
\sum_{n=1}^{\infty} a_n x^n - \sum_{n=1}^{\infty} 3a_{n-1} x^n = \sum_{n=1}^{\infty} nx^n.
\]

• \(f(x) - a_0 - 3x f(x) = \sum_{n=1}^{\infty} nx^n = \frac{x}{(1-x)^2}\) from p. 441.

• Hence

\[
f(x) = \frac{x}{(1-x)^2} + 1.
\]
The Method of Generating Functions (continued)

- Now,

\[
\begin{align*}
f(x) &= \frac{1}{1-3x} + \frac{x}{(1-x)^2(1-3x)} \\
&= \frac{7/4}{1-3x} + \frac{-1/4}{1-x} + \frac{-1/2}{(1-x)^2}
\end{align*}
\]

by a partial fraction decomposition.
The Method of Generating Functions (continued)

- \(\frac{7/4}{1-3x} = (7/4) \frac{1}{1-3x} = (7/4) \sum_{n=0}^{\infty} (3x)^n \).

- \(\frac{-1/4}{1-x} = -(1/4) \frac{1}{1-x} = -(1/4) \sum_{n=0}^{\infty} x^n \).

- \(\frac{-1/2}{(1-x)^2} = -(1/2) \frac{1}{(1-x)^2} = -(1/2) \sum_{n=0}^{\infty} (n+1) x^n \) from p. 440.
The Method of Generating Functions (concluded)

- Now,

\[f(x) = \left(\frac{7}{4} \right) \sum_{n=0}^{\infty} 3^n x^n - \left(\frac{1}{4} \right) \sum_{n=0}^{\infty} x^n - \left(\frac{1}{2} \right) \sum_{n=0}^{\infty} (n + 1) x^n. \]

- So

\[a_n = \left(\frac{7}{4} \right) 3^n - \left(\frac{1}{4} \right) - \left(\frac{1}{2} \right)(n + 1). \]

- The methodology should be clear.
The Method of Generating Functions for
\(a_{n+1} - a_n = 3^n \) with \(a_0 = 1 \)

- Let \(f(x) = \sum_{n=0}^{\infty} a_n x^n \) be the generating function for \(a_0, a_1, \ldots \).

- From the recurrence equation,
 \[
 \sum_{n=0}^{\infty} a_{n+1} x^{n+1} - \sum_{n=0}^{\infty} a_n x^{n+1} = \sum_{n=0}^{\infty} 3^n x^{n+1}.
 \]

- \(f(x) - a_0 - xf(x) = x \sum_{n=0}^{\infty} (3x)^n = \frac{x}{1-3x} \).

- This implies that
 \[
 f(x) = \frac{x}{1-3x} + 1 = \frac{1/2}{1-3x} + \frac{1/2}{1-x} = \left(\frac{1}{2} \right) \sum_{n=0}^{\infty} (3^n + 1) x^n.
 \]

- Hence \(a_n = (3^n + 1)/2 \).
The Method of Generating Functions for $a_{n+1} - Aa_n = B$ Again

- Assume $A \neq 1$.
- We want to obtain Eq. (87) on p. 566 by the method of generating functions.
- Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$ be the generating function for a_0, a_1, \ldots.
The Proof (continued)

- Then $\sum_{n=0}^{\infty} a_{n+1}x^n - \sum_{n=0}^{\infty} Aa_nx^n = \sum_{n=0}^{\infty} Bx^n$.
- So
 \[
 \frac{f(x) - a_0}{x} - Af(x) = \frac{B}{1 - x}
 \]

from p. 437.
The Proof (continued)

- Simplify the identity to yield

\[
\begin{align*}
 f(x) &= \frac{a_0}{1 - Ax} + \frac{Bx}{(1 - x)(1 - Ax)} \\
 &= \frac{a_0}{1 - Ax} + \frac{B}{1 - A} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right) \\
 &= \frac{a_0}{1 - Ax} + a_n^{(p)} \left(\frac{1}{1 - x} - \frac{1}{1 - Ax} \right) \\
 &= \left[a_0 - a_n^{(p)} \right] \frac{1}{1 - Ax} + a_n^{(p)} \frac{1}{1 - x},
\end{align*}
\]

where \(a_n^{(p)} \equiv B/(1 - A) \).
The Proof (concluded)

• From p. 437,

\[f(x) = \left[a_0 - a_n^{(p)} \right] \sum_{n=0}^{\infty} A^n x^n + a_n^{(p)} \sum_{n=0}^{\infty} x^n. \]

− Note that \(a_n^{(p)} \) is independent of \(n \).

• So

\[a_n = A^n \left[a_0 - a_n^{(p)} \right] + a_n^{(p)}, \]

matching the earlier solution on p. 566 as desired.
Convolutions

• Consider the following recurrence equation,

\[b_{n+1} = b_0 b_n + b_1 b_{n-1} + \cdots + b_{n-1} b_1 + b_n b_0. \]

• Then

\[
\sum_{n=0}^{\infty} b_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (b_0 b_n + b_1 b_{n-1} + \cdots + b_n b_0) x^{n+1}.
\]

• Let \(f(x) = \sum_{n=0}^{\infty} b_n x^n. \)

• Then \(f(x) - b_0 = x f^2(x) \) from p. 446.
The Proof (continued)

• When \(b_0 = 1 \),

\[
f(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}.
\]

• Pick

\[
f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}
\]

to match \(b_0 \).\(^a\)

• By Eq. (62) on p. 458,

\[
\sqrt{1 - 4x} = \sum_{n=0}^{\infty} \binom{1/2}{n} (-4x)^n = \sum_{n=0}^{\infty} \binom{1/2}{n} (-4)^n x^n.
\]

\(^a f(0) = \infty \) if one picks + (Graham, Knuth, Patashnik (1989)).
The Proof (concluded)

- Now,

\[
\binom{1/2}{n}(-4)^n = \frac{1}{n!} \left(\frac{1}{2} - 1 \right) \cdots \left(\frac{1}{2} - n + 1 \right) (-4)^n = -\frac{1}{2n-1} \binom{2n}{n}.
\]

- So

\[
f(x) = \sum_{n=1}^{\infty} \frac{\binom{2n}{n}}{2(2n-1)} x^{n-1}
\]

\[
= \sum_{n=1}^{\infty} \frac{\binom{2n-2}{n-1}}{n} x^{n-1}
\]

\[
= \sum_{n=0}^{\infty} \frac{\binom{2n}{n}}{n+1} x^n,
\]

the Catalan numbers (recall Eq. (17) on p. 118)!
An Example

- It is easy to verify that
 \[f(x) = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + \cdots. \]

- The coefficients are indeed
 \[
 \frac{0}{1}, \frac{2}{2}, \frac{4}{3}, \frac{6}{4}, \frac{8}{5}, \frac{10}{6}, \cdots.
 \]
A Binary Treea

aGustav Kirchhoff (1824–1887).
Number of Rooted Binary Trees

- There is a distinct node called the root.
- A rooted binary tree is ordered if the left and right branches are considered distinct.
- What is the number b_n of rooted ordered binary trees on n nodes?
Illustration: $b_3 = 5$
Number of Rooted Binary Trees: The Formula

- \(b_0 = 1 \), as it is the empty tree.
- Recursively,
 \[
 b_{n+1} = b_0 b_n + b_1 b_{n-1} + \cdots + b_{n-1} b_1 + b_n b_0.
 \]
 - \(b_i b_{n-i} \): \(i \) nodes on the left and \(n - i \) nodes on the right, \(0 \leq i \leq n \).
- So \(b_n \) is the \(n \)th Catalan number by Eq. (88) on p. 587:
 \[
 b_n = \frac{\binom{2n}{n}}{n+1}.
 \]
An Introduction to Graph Theory
If 50 million people believe a foolish thing,
it’s still a foolish thing.
— George Bernard Shaw (1856–1950)
Graphs

- Let V be a finite nonempty set of nodes.
- Let $E \subseteq V \times V$ be a set of edges.
- $G = (V, E)$ is the directed graph (or digraph) made up of the node set V and the edge set E.
- When E is considered to consist of unordered pairs, (V, E) is called an undirected graph.
- A graph is loop-free if it contains no loops.
- A multigraph allows multiple edges between nodes.

\(^a\)Founded by Leonhard Euler in 1736.
\(^b\)Assumed unless stated otherwise.
Graphs (concluded)

- For an undirected graph, we typically use \(\{x, y\} \) to represent an edge.
- For a digraph, we always use \((x, y) \) to represent an edge.
Illustration of Graphs

• In the following graph G,

\[V = \{a, b, c, d, e, f, g, h\} \]
\[E = \{\{a, b\}, \{a, e\}, \{a, f\}, \{b, c\}, \{b, g\}, \{b, f\}, \]
\[\{f, g\}, \{f, h\}, \{c, d\}, \{c, h\}, \{c, g\}, \]
\[\{d, e\}, \{d, h\}, \{g, h\}, \{h, e\}\}. \]
Applications of Graph Theory

- Representation of networks, both structured ones like interconnection networks and unstructured ones like the telephone network or the social network.
- Natural representation of relations (p. 333).
- Practically any computation can be described as a graph.
- Optimization problems such as circuit layout.
- Physical systems such as ferromagnetism.
- Social networks.
- ...
Additional Notions

• Let \(G = (V, E) \) be a graph (directed or otherwise).

• \(G_1 = (V_1, E_1) \) is called a subgraph of \(G \) if
 - \(\emptyset \neq V_1 \subseteq V \).
 - \(E_1 \subseteq V_1 \times V_1 \).
 - \(E_1 \subseteq E \).

• \(G_1 \) is an induced subgraph of \(G \) if it is a subgraph of \(G \) and \(E_1 = E \cap (V_1 \times V_1) \).

• An undirected graph \(G \) is connected if there is a path between any two distinct nodes of \(G \).

• A component is a maximal subgraph that is connected.
Illustration of Subgraphs
All Kinds of Walks on Undirected Graphs

• A walk from x to y is a finite sequence of non-loop edges connecting x and y.

• The length of a walk is the number of edges in it.

• A walk from x to y where $x \neq y$ is called an open walk.

• A walk from x to itself is called a closed walk.

• A walk without repeated edges is called a trail.

• A closed trail is called a circuit.
All Kinds of Walks on Undirected Graphs (concluded)

- A walk without repeated nodes is a (simple) path.
- A closed path is called a cycle.
 - A cycle must be a circuit, but not vice versa.
- By convention, a cycle has at least 3 distinct edges.
- A cycle of even length is called an even cycle; a cycle of odd length is called an odd cycle.
- These definitions apply to digraphs with minimal changes.
- A digraph that has no cycles is called acyclic.
Illustration of Walks

- (b, c, g, b, f) is a trail of length 4.
- (a, b, c) is a path of length 2.
- (a, b, c, d, e, a) is a cycle of length 5.
- $(g, b, c, g, h, e, a, f, g)$ is a circuit but not a cycle.
Partial Order and Its Digraph Representation

- The digraph representation of a partial order (p. 340) must be acyclic.
 - Recall p. 345.

- Any acyclic digraph entails a partial order.
 - Take the transitive closure of the digraph.
 - The resulting digraph clearly remains acyclic.
 - Add a loop to every node.
 - It is not hard to check that the digraph’s associated relation satisfies the definition of partial order.
Transitive Closure of a Digraph
Diameter

- Let $G(V, E)$ be an undirected graph.
- The **distance** between nodes $x, y \in V$ (or $d(x, y)$) is the minimum length of all the paths between x and y.
- The **diameter** $d(G)$ of G is the maximum distance over all pairs of nodes of G.
 - So any two nodes must have distance at most $d(G)$ between them.
- Diameter can be computed by an efficient all-pair-shortest-paths algorithm.a

aFloyd (1962); Roy (1959); Warshall (1962).
Complete Graphs

• Let V be a set of n nodes.

• The **complete graph** on V, denoted K_n, is a loop-free undirected graph.
 - There is an edge between any pair of distinct nodes.
 - K_n has $\binom{n}{2}$ edges.
 - Depending on applications, sometimes (self-)loops are allowed.

• The diameter of K_n is clearly one.
K_{17}
Complete Graphs (concluded)

- There are \(\binom{n}{i} \) ways to pick \(i \) nodes from \(K_n \).
- As there are \(\binom{i}{2} \) pairs of nodes, there are \(2^{\binom{i}{2}} \) ways to pick the edges.
- Hence \(K_n \) has
 \[
 \sum_{i=1}^{n} \binom{n}{i} 2^{\binom{i}{2}}
 \]
 subgraphs.
- Can you simplify it?
An Inequality Relating $|V|$ and $|E|$

Lemma 71 Let $G = (V, E)$ be an undirected graph. Then

$$|V| \geq \frac{1 + \sqrt{1 + 8 \times |E|}}{2}.$$

- G has at most $\left(\frac{|V|}{2}\right)$ edges (the complete graph).
- So V must be big enough such that $\left(\frac{|V|}{2}\right) \geq |E|$.
- This results in $|V|^2 - |V| \geq 2 \times |E|$, or

$$\left(|V| - \frac{1}{2}\right)^2 \geq \frac{1}{4} + 2 \times |E| \geq \frac{1 + 8 \times |E|}{4}.$$
Complements

- The **complement** of graph G, denoted \overline{G}, is the subgraph of K_n consisting of the nodes in G and all edges that are not in G.
 - $\overline{K_n}$, consisting of n nodes and no edges is called a null graph.
A Useful Identity

- Let $G = (V, E)$ be an undirected graph.
- For each node $v \in G$, the degree of v, written $\text{deg}(v)$, is the number of edges in G that are incident with v.
 - A loop is considered as two incident edges.
- Now, the handshaking theorem says
 \[
 \sum_{v \in V} \text{deg}(v) = 2 \times |E|.
 \]
 - An edge is counted twice, once at each end.

Corollary 72 For finite graphs, the number of nodes of odd degree must be even.