Problem 1 (10 points) Prove that any two consecutive Fibonacci numbers are relatively prime. The Fibonacci recurrence equation is $F_{n+1} = F_n + F_{n-1}$ with $F_0 = 0$ and $F_1 = 1$.

Ans: Since $\gcd(F_0, F_1) = \gcd(F_1, F_2) = 1$, consider $n > 2$. Inductively, assume $\gcd(F_i, F_{i+1}) = 1$ for all $i < n$. Suppose $\gcd(F_n, F_{n+1}) = d > 1$. In particular, d divides F_n and F_{n+1}. Then $F_{n+1} - F_n = F_{n-1}$ is also divisible by d. After the above, d divides $\gcd(F_{n-1}, F_n)$, contradicting the induction step. Thus F_n and F_{n+1} must be relatively prime.

Problem 2 (10 points) Solve the recurrence relation $a_{n+2} - 5a_{n+1} + 4a_n = 0$, where $n \geq 0$ and $a_0 = 4$, $a_1 = 13$.

Ans: $a_n = \pm \sqrt{51(4^n) - 35}, n \geq 0$.

Problem 3 (10 points) If $a_0 = 0$, $a_1 = 1$, $a_2 = 4$, and $a_3 = 37$ satisfy the recurrence relation $a_{n+2} + ba_{n+1} + ca_n = 0$, where $n \geq 0$ and b, c are constants, determine b, c and solve for a_n.

Ans: $b = -4$, $c = -21$, $a_n = (1/10)[7^n - (-3)^n], n \geq 0$.

Problem 4 (5 points) Can a simple graph exist with 15 vertices each of degree five?

Ans: No.
Problem 5 (10 points) If the simple graph G has v vertices and e edges, how many edges does G have?

Ans: $v(v - 1)/2 - e$.

Problem 6 (10 points) Prove that an acyclic digraph has at least one node of out-degree zero. (An acyclic digraph is a directed graph containing no directed cycles.)

Ans: Consider the last node of any longest path in the digraph. This node can have no nodes that are incident from it because; otherwise, there would be a cycle.

Problem 7 (10 points) If $G = (V, E)$ is a loop-free undirected graph, prove that G is a tree if there is a unique path between any two vertices of G.

Ans: If there is a unique path between each pair of vertices in G, then G is connected. If G contains a cycle, then there is a pair of vertices x, y with two distinct paths connecting x and y. Hence, G is a loop-free connected undirected graph with no cycles, so a tree.

Problem 8 (5 points) Give an example of an undirected graph $G = (V, E)$, where $|V| = |E| + 1$ but G is not a tree.

Ans:

```
\begin{center}
\begin{tikzpicture}
    \node[vertex] (a) at (0,0) {$a$};
    \node[vertex] (b) at (1,1) {$b$};
    \node[vertex] (c) at (1,-1) {$c$};
    \node[vertex] (d) at (2,0) {$d$};
    \draw (a) -- (b) -- (c) -- (a);
    \draw (c) -- (d);
\end{tikzpicture}
\end{center}
```
Problem 9 (10 points) If G is a group, let $H = \{a \in G \mid ag = ga \text{ for all } g \in G\}$. Prove that H is a subgroup of G. (The subgroup H is called the center of G.)

Ans: Since $ag = ga$ for all $g \in G$, it follows that $a \in H$ and $H \neq \emptyset$. If $x, y \in H$, then $xg = gx$ and $yg = gy$ for all $g \in G$. Consequently, $(xy)g = x(yg) = x(gy) = (xg)y = g(xy)$ for all $g \in G$, and we have $xy \in H$. Finally, for each $x \in H, g \in G, xg^{-1} = g^{-1}x$. So $(xg^{-1})^{-1} = (g^{-1}x)^{-1}$, or $gx^{-1} = x^{-1}g$, and $x^{-1} \in H$. Therefore, H is a subgroup of G.

Problem 10 (10 points) Verify that (\mathbb{Z}_{p}, \cdot) is cyclic for the primes $p = 7$ and 11.

Ans: $\mathbb{Z}_{7}^{*} = \langle 3 \rangle = \langle 5 \rangle$; $\mathbb{Z}_{11}^{*} = \langle 2 \rangle = \langle 6 \rangle = \langle 7 \rangle = \langle 8 \rangle$.

Problem 11 (10 points) Prove that every group of prime order is cyclic.

Ans: Pick any element $a \neq e$ of the group G. As $o(a)$ divides $|G|$, a prime number, $o(a) = |G|$. This implies that every $b \in G$ must be of the form a^k for some $k \in \mathbb{Z}$.