A Warmup to Razborov's (1985) Theorem ${ }^{\text {a }}$

Lemma 85 (The birthday problem) The probability of collision, $C(N, q)$, when q balls are thrown randomly into $N \geq q$ bins is at most

$$
\frac{q(q-1)}{2 N} .
$$

Lemma 86 If crude circuit $C C\left(X_{1}, X_{2}, \ldots, X_{m}\right)$ computes CLIQUE $_{n, k}$, then $m \geq n^{n^{1 / 8} / 20}$ for n sufficiently large.

[^0]
The Proof (continued)

- Let $k=n^{1 / 4}$.
- Let $\ell=\sqrt{k} / 10$.
- Let $X \subseteq V$.

The Proof (continued)

- Suppose $|X| \leq \ell$.
- A random $f: X \rightarrow\{1,2, \ldots, k-1\}$ has collisions with probability less than 0.01 by Lemma 85 (p. 803).
- Hence f is one-to-one with probability 0.99 .
- When f is one-to-one, f is a coloring of X with $k-1$ colors without repeated colors.
- As a result, when f is one-to-one, it generates a clique on X.

The Proof (continued)

- Note that a random negative example is simply a random $g: V \rightarrow\{1,2, \ldots, k-1\}$.
- So our random $f: X \rightarrow\{1,2, \ldots, k-1\}$ is simply a random g restricted to X.
- In summary, the probability that X is not a clique when supplied with a random negative example is at most 0.01.

The Proof (continued)

- Now suppose $|X|>\ell$.
- Consider the probability that X is a clique when supplied with a random positive example.
- It is the probability that X is part of the clique.
- Hence the desired probability is $\binom{n-\ell}{k-\ell} /\binom{n}{k}$.

The Proof (continued)

- Now,

$$
\begin{aligned}
\frac{\binom{n-\ell}{k-\ell}}{\binom{n}{k}} & =\frac{k(k-1) \cdots(k-\ell+1)}{n(n-1) \cdots(n-\ell+1)} \\
& \leq\left(\frac{k}{n}\right)^{\ell} \\
& \leq n^{-(3 / 4) \ell} \\
& \leq n^{-\sqrt{k} / 20} \\
& =n^{-n^{1 / 8} / 20}
\end{aligned}
$$

The Proof (concluded)

- In summary, the probability that X is a clique when supplied with a random positive example is at most $n^{-n^{1 / 8} / 20}$.
- So we need at least $n^{n^{1 / 8} / 20} X \mathrm{~s}$ in the crude circuit.

Sunflowers

- Fix $p \in \mathbb{Z}^{+}$and $\ell \in \mathbb{Z}^{+}$.
- A sunflower is a family of p sets $\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most ℓ.
- Furthermore, all pairs of sets in the family must have the same intersection (called the core of the sunflower).

A Sample Sunflower

$$
\begin{aligned}
& \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\} \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

The Erdős-Rado Lemma

Lemma 87 Let \mathcal{Z} be a family of more than $M \triangleq(p-1)^{\ell} \ell$! nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ.
- For $\ell=1, p$ different singletons form a sunflower (with an empty core).
- Suppose $\ell>1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
- Every set in $\mathcal{Z}-\mathcal{D}$ intersects some set in \mathcal{D}.

The Proof of the Erdős-Rado Lemma (continued)
For example,

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,3,6,9\},\{0,4,8,11\} \\
& \{4,5,6,7\},\{5,8,9,10\},\{6,7,9,11\}\} \\
\mathcal{D}= & \{\{1,2,3,5\},\{0,4,8,11\}\}
\end{aligned}
$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
- \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
- Let C be the union of all sets in \mathcal{D}.
$-|C|<(p-1) \ell$.
- C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
- There is a $d \in C$ that intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell-1}(\ell-1)!$ sets in \mathcal{Z}.
- Consider $\mathcal{Z}^{\prime}=\{Z-\{d\}: Z \in \mathcal{Z}, d \in Z\}$.

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
- \mathcal{Z}^{\prime} has more than $M^{\prime} \triangleq(p-1)^{\ell-1}(\ell-1)$! sets.
$-M^{\prime}$ is just M with ℓ replaced with $\ell-1$.
$-\mathcal{Z}^{\prime}$ contains a sunflower by induction, say

$$
\left\{P_{1}, P_{2}, \ldots, P_{p}\right\}
$$

- Now,

$$
\left\{P_{1} \cup\{d\}, P_{2} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}
$$

is a sunflower in \mathcal{Z}.

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- Plucking a sunflower means replacing the sets in the sunflower by its core.
- By repeatedly finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\operatorname{pluck}(\mathcal{Z})$.
- pluck (\mathcal{Z}) is not unique. ${ }^{\text {a }}$

[^1]
An Example of Plucking

- Recall the sunflower on p. 811:

$$
\begin{aligned}
\mathcal{Z}= & \{\{1,2,3,5\},\{1,2,6,9\},\{0,1,2,11\}, \\
& \{1,2,12,13\},\{1,2,8,10\},\{1,2,4,7\}\}
\end{aligned}
$$

- Then

$$
\operatorname{pluck}(\mathcal{Z})=\{\{1,2\}\} .
$$

Razborov's Theorem

Theorem 88 (Razborov, 1985) There is a constant c such that for large enough n, all monotone circuits for CLIQUE $_{n, k}$ with $k=n^{1 / 4}$ have size at least $n^{c n^{1 / 8}}$.

- We shall approximate any monotone circuit for CLIQUE $_{n, k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- Yet, the final crude circuit has exponentially many errors.

The Proof

- Fix $k=n^{1 / 4}$.
- Fix $\ell=n^{1 / 8}$.
- Note that ${ }^{\text {a }}$

$$
2\binom{\ell}{2} \leq k-1
$$

- p will be fixed later to be $n^{1 / 8} \log n$.
- $\operatorname{Fix} M=(p-1)^{\ell} \ell!$.
- Recall the Erdős-Rado lemma (p. 812).

[^2]
The Proof (continued)

- Each crude circuit used in the approximation process is of the form $\operatorname{CC}\left(X_{1}, X_{2}, \ldots, X_{m}\right)$, where:
- $X_{i} \subseteq V$.
$-\left|X_{i}\right| \leq \ell$.
- $m \leq M$.
- It answers true if any X_{i} is a clique.
- We shall show how to approximate any monotone circuit for CLIQUE n, k by such a crude circuit, inductively.
- The induction basis is straightforward:
- Input gate $g_{i j}$ is the crude circuit $\operatorname{CC}(\{i, j\})$.

The Proof (continued)

- A monotone circuit is the OR or AND of two subcircuits.
- We will build approximators of the overall circuit from the approximators of the two subcircuits.
- Start with two crude circuits $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$.
$-\mathcal{X}$ and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
- We will construct the approximate OR and the approximate AND of these subcircuits.
- Then show both approximations introduce few errors.

The Proof: OR

- $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the or of $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$.
- Trivially, a node set $\mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ is a clique if and only if $\mathcal{C} \in \mathcal{X}$ is a clique or $\mathcal{C} \in \mathcal{Y}$ is a clique.
- Violations in using $\operatorname{CC}(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}|>M$.
- Such violations are eliminated by using

$$
\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))
$$

as the approximate or of $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$.

The Proof: OR

- If $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true.
- The quick reason: If Y is a clique, then a subset of Y must also be a clique.
- Let $Y \in \mathcal{Z}$ be a clique.
- There must exist an $X \in \operatorname{pluck}(\mathcal{Z})$ such that $X \subseteq Y$.
- This X is also a clique.

The Proof: OR (continued)

The Proof: OR (concluded)

- $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return false but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck $(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return true but makes $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
- We next count the number of false positives and false negatives introduced ${ }^{\text {a }}$ by $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$.
- Let us work on false negatives first.
${ }^{\text {a }}$ Compared with $\mathrm{CC}(\mathcal{X} \cup \mathcal{Y})$ of course.

The Number of False Negatives

Lemma $89 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- Each plucking replaces sets in a crude circuit by their common subset.
- This makes the test for cliqueness less stringent (p. 823). ${ }^{\text {a }}$

[^3]
The Number of False Positives

Lemma $90 \operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces at most $\frac{2 M}{p-1} 2^{-p}(k-1)^{n}$ false positives.

- Each plucking operation replaces the sunflower $\left\{Z_{1}, Z_{2}, \ldots, Z_{p}\right\}$ with its common core Z.
- A false positive is necessarily a coloring such that:
- There is a pair of identically colored nodes in each petal Z_{i} (and so $\mathrm{CC}\left(Z_{1}, Z_{2}, \ldots, Z_{p}\right)$ returns false).
- But the core contains distinctly colored nodes.
- This implies at least one node from each identical-color pair was plucked away.

Proof of Lemma 90 (continued)

Proof of Lemma 90 (continued)

- We now count the number of such colorings.
- Color nodes in V at random with $k-1$ colors.
- Let $R(X)$ denote the event that there are repeated colors in set X.

Proof of Lemma 90 (continued)

- Now

$$
\begin{align*}
& \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right] \tag{23}\\
\leq & \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \cdots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right] \\
= & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \\
\leq & \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right] . \tag{24}
\end{align*}
$$

- First equality holds because $R\left(Z_{i}\right)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_{i} decreases given no repetitions in its subset Z.

Proof of Lemma 90 (continued)

- Consider two nodes in Z_{i}.
- The probability that they have identical color is

$$
\frac{1}{k-1} .
$$

- Now

$$
\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\binom{\left|Z_{i}\right|}{2}}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2} .
$$

- So the probability ${ }^{\text {a }}$ that a random coloring is a new false positive is at most 2^{-p} by inequality (24) on p. 830 .
${ }^{\text {a }}$ Proportion, i.e.

Proof of Lemma 90 (continued)

- As there are $(k-1)^{n}$ different colorings, each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives.
- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2 M$.
- When the procedure pluck $(\mathcal{X} \cup \mathcal{Y})$ ends, the set system contains $\leq M$ sets.

Proof of Lemma 90 (concluded)

- Each plucking reduces the number of sets by $p-1$.
- Hence at most $2 M /(p-1)$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$
\frac{2 M}{p-1} 2^{-p}(k-1)^{n}
$$

false positives are introduced. ${ }^{\text {a }}$

[^4]
The Proof: And

- The approximate AND of crude circuits $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ is

$$
\operatorname{CC}\left(\operatorname{pluck}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)\right) .
$$

- We now count the number of errors this approximate AND introduces on the positive and negative examples.

The Proof: AND (concluded)

- The approximate and introduces a false positive if a negative example makes either $\operatorname{CC}(\mathcal{X})$ or $\operatorname{CC}(\mathcal{Y})$ return false but makes the approximate and return true.
- The approximate AND introduces a false negative if a positive example makes both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true but makes the approximate AND return false.
- We now bound the number of false positives and false negatives introduced ${ }^{\text {a }}$ by the approximate and.

[^5]
The Number of False Positives

Lemma 91 The approximate and introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

- We prove this claim in stages.
- CC($\left.\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false positives.
- If $X_{i} \cup Y_{j}$ is a clique, both X_{i} and Y_{j} must be cliques, making both $\operatorname{CC}(\mathcal{X})$ and $\operatorname{CC}(\mathcal{Y})$ return true.
- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces no additional false positives because we are testing only a subset of sets for cliqueness.

Proof of Lemma 91 (concluded)

- $\left|\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right| \leq M^{2}$.
- Each plucking reduces the number of sets by $p-1$.
- So pluck $\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ involves $\leq M^{2} /(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^{n}$ false positives by the proof of Lemma 90 (p. 827).
- The desired upper bound is

$$
\left[M^{2} /(p-1)\right] 2^{-p}(k-1)^{n} \leq M^{2} 2^{-p}(k-1)^{n} .
$$

The Number of False Negatives

Lemma 92 The approximate AND introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- $\mathrm{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$ introduces no false negatives.
- Suppose both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ accept a positive example with a clique \mathcal{C} of size k.
- This clique \mathcal{C} must contain an $X_{i} \in \mathcal{X}$ and a $Y_{j} \in \mathcal{Y}$. * This is why both $\mathrm{CC}(\mathcal{X})$ and $\mathrm{CC}(\mathcal{Y})$ return true.
- As this clique \mathcal{C} also contains $X_{i} \cup Y_{j}$, the new circuit returns true.

Proof of Lemma 92 (continued)

Clique of size k

Proof of Lemma 92 (continued)

- $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y},\left|X_{i} \cup Y_{j}\right| \leq \ell\right\}\right)$ introduces $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set $Z \triangleq X_{i} \cup Y_{j}$ larger than ℓ introduces false negatives only if Z is part of a clique.
- There are $\left(\begin{array}{c}\left.n-\left\lvert\, \begin{array}{c}Z \mid \\ k-|Z|\end{array}\right.\right) \text { such cliques. }\end{array}\right.$
* It is the number of positive examples whose clique contains Z.
$-\binom{n-|Z|}{k-|Z|} \leq\binom{ n-\ell-1}{k-\ell-1}$ as $|Z|>\ell$.
- There are at most M^{2} such $Z \mathrm{~s}$.

Proof of Lemma 92 (concluded)

- Plucking introduces no false negatives.
- Recall that if $\operatorname{CC}(\mathcal{Z})$ is true, then $\operatorname{CC}(\operatorname{pluck}(\mathcal{Z}))$ must be true (p. 823).

Two Summarizing Lemmas

From Lemmas 90 (p. 827) and 91 (p. 836), we have:
Lemma 93 Each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives.

From Lemmas 89 (p. 826) and 92 (p. 838), we have:
Lemma 94 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 95 Every final crude circuit is:

1. Identically false-thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1 / 8}$ is less than $k=n^{1 / 4}$.

Proof of Lemma 95 (concluded)

- The proof of Lemma 90 (p. 827ff) shows that at least half of the colorings assign different colors to nodes in X.
- So at least half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 819:

$$
\begin{aligned}
k & \triangleq n^{1 / 4} \\
\ell & \triangleq n^{1 / 8} \\
p & \triangleq n^{1 / 8} \log n \\
M & \triangleq(p-1)^{\ell} \ell!<n^{(1 / 3) n^{1 / 8}} \quad \text { for large } n
\end{aligned}
$$

The Proof (continued)

- Suppose the final crude circuit is identically false.
- By Lemma 94 (p. 842), each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are $\binom{n}{k}$ positive examples.
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \geq \frac{1}{M^{2}}\left(\frac{n-\ell}{k}\right)^{\ell} \geq n^{(1 / 12) n^{1 / 8}}
$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
- Lemma 95 (p. 844) says that there are at least $(k-1)^{n} / 2$ false positives.
- By Lemma 93 (p. 842), each approximation step introduces at most $M^{2} 2^{-p}(k-1)^{n}$ false positives
- The original monotone circuit for CLIQUE $_{n, k}$ has at least

$$
\frac{(k-1)^{n} / 2}{M^{2} 2^{-p}(k-1)^{n}}=\frac{2^{p-1}}{M^{2}} \geq n^{(1 / 3) n^{1 / 8}}
$$

gates.

Alexander Razborov (1963-)

$\mathrm{P} \neq \mathrm{NP}$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $\mathrm{P} \neq \mathrm{NP}$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

Finis

[^0]: ${ }^{\text {a }}$ Arora \& Barak (2009).

[^1]: ${ }^{\text {a }}$ It depends on the sequence of sunflowers one plucks.

[^2]: ${ }^{\text {a }}$ Corrected by Mr. Moustapha Bande (D98922042) on January 5, 2010.

[^3]: ${ }^{\text {a }}$ Recall that $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $\mathrm{CC}(\mathcal{X})$ or $\mathrm{CC}(\mathcal{Y})$ return true but makes $\mathrm{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

[^4]: ${ }^{\text {a }}$ Note that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

[^5]: ${ }^{\text {a }}$ Compared with $\operatorname{CC}\left(\left\{X_{i} \cup Y_{j}: X_{i} \in \mathcal{X}, Y_{j} \in \mathcal{Y}\right\}\right)$.

