
Complete Problems and Complexity Classes

Proposition 29 Let C′ and C be two complexity classes

such that C′ ⊆ C. Assume C′ is closed under reductions and

L is C-complete. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.
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The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.
• Thus, trivially, L ∈ C′.
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Two Important Corollaries

Proposition 29 implies the following.

Corollary 30 P = NP if and only if an NP-complete

problem in P.

Corollary 31 L = P if and only if a P-complete problem is

in L.
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Complete Problems and Complexity Classes, Again

Proposition 32 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,
then C = C′.

• All languages A ∈ C reduce to L ∈ C and L ∈ C′.

• Since C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.
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Table of Computation

• Let M = (K,Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound.

– It is essentially a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.
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Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔
s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.
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Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.
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Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some position j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
�0s10001

⊔⊔
· · ·

⊔

• A typical row looks like

| x |k︷ ︸︸ ︷
�10100q01110100

⊔⊔
· · ·

⊔
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Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
� · · · “yes” · · ·

⊔
or

|x |k︷ ︸︸ ︷
� · · · “no” · · ·

⊔

• Three out of the table’s 4 borders are known:

� � � � � � � �

�

�

�

�

� �

� �

...
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A P-Complete Problem

Theorem 33 (Ladner, 1975) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• Recall that three out of T ’s 4 borders are known.

• So when i = 0, or j = 0, or j = |x |k − 1, the value of Tij

is known.

– The jth symbol of x or
⊔
, a �, or a

⊔
, respectively.

• Consider other entries Tij .
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The Proof (continued)

• Tij depends on only Ti−1,j−1, Ti−1,j, and Ti−1,j+1:
a

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K }.
• Encode each symbol of Γ as an m-bit number,b where

m = �log2 |Γ |�.
aThe dependency is thus “local.”
bCalled state assignment in circuit design.
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The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij.

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sij�, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ � ≤ m.
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The Proof (continued)

• Each bit Sij� depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j: Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So truth values for the 3m bits determine Sij�.
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The Proof (continued)

• This means there is a boolean function F� with 3m

inputs such that

Sij�

= F�(

Ti−1,j−1︷ ︸︸ ︷
Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Ti−1,j︷ ︸︸ ︷
Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Ti−1,j+1︷ ︸︸ ︷
Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m)

for all i, j > 0 and 1 ≤ � ≤ m.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 306



The Proof (continued)

• These F�’s depend only on M ’s specification, not on x, i,

or j.

• Their sizes are constant.

• These boolean functions can be turned into boolean

circuits (see p. 204).

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j, Ti−1,j+1) = Tij .
a

aC is like an ASIC (application-specific IC) chip.
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Circuit C

Ti - 1,j - 1

Tij

Ti - 1,j + 1Ti - 1,j

C
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

column borders.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.
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The Computation Tableau and R(x)

� � � � � � � �

�

�

�

�

� � � � � �

� � � � � �

� � � � � �
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A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 34 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide L.
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monotone circuit value

• A monotone boolean circuit’s output cannot change

from true to false when one input changes from false to

true.

• Monotone boolean circuits are hence less expressive than

general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied

to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as

hard as circuit value.

Corollary 35 (Goldschlager, 1977) monotone circuit

value is P-complete.

• Given any general circuit, “move the ¬’s downwards”
using de Morgan’s lawsa to yield a monotone circuit

with the same output.

Theorem 36 (Goldschlager, 1977) planar monotone

circuit value is P-complete.

aHow? Need to make sure no exponential blowup.
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maximum flow Is P-Complete

Theorem 37 (Goldschlager, Shaw, & Staples, 1982)

maximum flow is P-complete.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 314



Cook’s Theorem: the First NP-Complete Problem

Theorem 38 (Cook, 1971) sat is NP-complete.

• sat ∈ NP (p. 117).

• circuit sat reduces to sat (p. 279).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.a

aAs a bonus, this also shows circuit sat is NP-complete.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• Equivalently, for each input x, M(x) = “yes” for some

computation path if and only if R(x) is satisfiable.

• How to come up with a polynomial-sized R(x) when

there are exponentially many computation paths?
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The Proof (continued)

• A straightforward proof is to construct a variable-free

circuit Ri(x) for the ith computation path.a

• Then add a small circuit to output 1 if and only if there

is an Ri(x) that outputs a “yes.”

• Clearly, the resulting circuit outputs 1 if and only if M

accepts x.

• But, it is too large because there are exponentially many

computation paths.

• Need to do better.

aThe circuit for Theorem 33 (p. 301) will do.
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The Proof (continued)

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c|x |k−1) ∈ { 0, 1 }|x |k−1.

• Once B is given, the computation is deterministic.

• Each choice of B results in a deterministic

polynomial-time computation.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j, Ti−1,j+1, c) = Tij .
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The Proof (continued)

C

c
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The Computation Tableau for NTMs and R(x)

� � � � � � � �

�

�

�

�

� � � � � �

� � � � � �
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�
�
�
�
�
�
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The Proof (concluded)

• Note that c1, c2, . . . , c|x |k−1 constitute the variables of

R(x).

– Some call them the choice gates of the circuit.

• The overall circuit R(x) (on p. 320) is satisfiable if and

only if there is a truth assignment B such that the

computation table accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Stephen Arthur Cooka (1939–)

Richard Karp, “It is to our

everlasting shame that we

were unable to persuade

the math department [of

UC-Berkeley] to give him

tenure.”

aTuring Award (1982). See http://conservancy.umn.edu/handle/107226

for an interview in 2002.
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A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 39 If L ∈ NTIME(T (n)), then a

nondeterministic circuit with O(T 2(n)) gates can decide L.
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NP-Complete Problems
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Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new

principle: “NP-complete problems are hard.”

That is, solving those problems efficiently is

impossible on any device that could be built

in the real world, whatever the final laws

of physics turn out to be.

— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R }

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies | y | ≤ |x |k for some k ≥ 1.
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An Alternative Characterization of NP

Proposition 40 (Edmonds, 1965) Let L ⊆ Σ∗ be a

language. Then L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R }.
• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k.
– It then tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.
• Define R as follows: (x, y) ∈ R if and only if y is the

encoding of an accepting computation of N on input x.

• R is polynomially balanced as N runs in polynomial

time.

• R is polynomially decidable because it can be efficiently

verified by consulting N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y } because N

decides L.
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Jack Edmonds (1934–)
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Comments

• Any “yes” instance x of an NP problem has at least one

succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat; an

alleged Hamiltonian path for hamiltonian path.

• Certificates may be hard to generate,a but verification

must be easy.

• NP is thus the class of easy-to-verifyb problems.

aUnless P equals NP.
bThat is, in polynomial time.
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Comments (concluded)

• The degree k is not an input.

• How to find the k needed by the NTM is of no concern.a

• We only need to prove there exists an NTM that accepts

L in nondeterministic polynomial time.

aContributed by Mr. Kai-Yuan Hou (B99201038, R03922014) on

November 3, 2015.
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You Have an NP-Complete Problem (for Your Thesis)

• From Propositions 29 (p. 291) and Proposition 32

(p. 294), it is the least likely to be in P.

• Your options are:

– Approximations.

– Special cases.

– Average performance.

– Randomized algorithms.

– Exponential-time algorithms that work well in

practice.

– “Heuristics” (and pray that it works for your thesis).
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I thought NP-completeness was an interesting idea:

I didn’t quite realize its potential impact.

— Stephen Cook (1998)

I was indeed surprised by Karp’s work

since I did not expect so many

wonderful problems were NP-complete.

— Leonid Levin (1998)
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Correct Use of Reduction in Proving NP-Completeness

• Recall that L1 reduces to L2 if there is an efficient

function R such that for all inputs x (p. 264),

x ∈ L1 if and only if R(x) ∈ L2.

• When L1 is known to be NP-complete and when

L2 ∈ NP, then L2 is NP-complete.

• A common mistake is to focus on solving x ∈ L1 or

solving R(x) ∈ L2.

• The correct way is to, given a certificate for x ∈ L1 (a

satisfying truth assignment, e.g.), construct a certificate

for R(x) ∈ L2 (a Hamiltonian path, e.g.), and vice versa.
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3sat

• k-sat, where k ∈ Z
+, is the special case of sat.

• The formula is in CNF and all clauses have exactly k

literals (repetition of literals is allowed).

• For example,

(x1 ∨ x2 ∨ ¬x3) ∧ (x1 ∨ x1 ∨ ¬x2) ∧ (x1 ∨ ¬x2 ∨ ¬x3).
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3sat Is NP-Completea

• Recall Cook’s Theorem (p. 315) and the reduction of

circuit sat to sat (p. 279).

• The resulting CNF has at most 3 literals for each clause.

– This accidentally shows that 3sat where each clause

has at most 3 literals is NP-complete.

• Finally, duplicate one literal once or twice to make it a

3sat formula.

– So

x1 ∨ x2 becomes x1 ∨ x2 ∨ x2.

aGarey, Johnson, & Stockmeyer (1976).
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Michael R. Garey (1945–)
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David S. Johnson (1945–)
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Larry Stockmeyer (1948–2004)
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The Satisfiability of Random 3sat Expressions

• Consider a random 3sat expressions φ with n variables

and cn clauses.

• Each clause is chosen independently and uniformly from

the set of all possible clauses.

• Intuitively, the larger the c, the less likely φ is satisfiable

as more constraints are added.

• Indeed, there is a cn such that for c < cn(1− ε), φ is

satisfiable almost surely, and for c > cn(1 + ε), φ is

unsatisfiable almost surely.a

aFriedgut & Bourgain (1999). As of 2006, 3.52 < cn < 4.596.
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Another Variant of 3sat

Proposition 41 3sat is NP-complete for expressions in

which each variable is restricted to appear at most three

times, and each literal at most twice. (3sat here requires

only that each clause has at most 3 literals.)
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The Proof (continued)

• Consider a general 3sat expression in which x appears k

times.

• Replace the first occurrence of x by x1, the second by

x2, and so on.

– x1, x2, . . . , xk are k new variables.
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The Proof (concluded)

• Add (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ · · · ∧ (¬xk ∨ x1) to the

expression.

– It is logically equivalent to

x1 ⇒ x2 ⇒ · · · ⇒ xk ⇒ x1.

– So x1, x2, . . . , xk must assume an identical truth

value for the whole expression to be satisfied.

• Note that each clause ¬xi ∨ xj above has only 2 literals.

• The resulting equivalent expression satisfies the

conditions for x.
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An Example

• Suppose we are given the following 3sat expression

· · · (¬x ∨ w ∨ g) ∧ · · · ∧ (x ∨ y ∨ z) · · · .
• The transformed expression is

· · · (¬ x1 ∨w∨g)∧· · ·∧( x2 ∨y∨z) · · · ( ¬x1 ∨ x2 )∧( ¬x2 ∨ x1 ).

– Variable x1 appears 3 times.

– Literal x1 appears once.

– Literal ¬x1 appears 2 times.
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2sat Is in NL ⊆ P

• Let φ be an instance of 2sat: Each clause has 2 literals.

• NL is a subset of P (p. 242).

• By Eq. (3) on p. 256, coNL equals NL.

• We need to show only that recognizing unsatisfiable

2sat expressions is in NL.

• See the textbook for the complete proof.
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Generalized 2sat: max2sat

• Consider a 2sat formula.

• Let K ∈ N.

• max2sat asks whether there is a truth assignment that

satisfies at least K of the clauses.

– max2sat becomes 2sat when K equals the number

of clauses.
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Generalized 2sat: max2sat (concluded)

• max2sat is an optimization problem.

– With binary search, one can nail the maximum

number of satisfiable clauses of 2sat formulas.

• max2sat ∈ NP: Guess a truth assignment and verify

the count.

• We now reduce 3sat to max2sat.
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