
Boolean Logic
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Both of us had said the very same thing.

Did we both speak the truth

—or one of us did

—or neither?

— Joseph Conrad (1857–1924),

Lord Jim (1900)
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.
Boolean expressions: Boolean variables, ¬φ (negation),

φ1 ∨ φ2 (disjunction), φ1 ∧ φ2 (conjunction).

• ∨n
i=1 φi stands for φ1 ∨ φ2 ∨ · · · ∨ φn.

• ∧n
i=1 φi stands for φ1 ∧ φ2 ∧ · · · ∧ φn.

Implications: φ1 ⇒ φ2 is a shorthand for ¬φ1 ∨ φ2.

Biconditionals: φ1 ⇔ φ2 is a shorthand for

(φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression φ if it defines the truth value for every

variable in φ.

– {x1 = true, x2 = false } is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false } is not appropriate to

x1 ∨ x2.
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Satisfaction

• T |= φ means boolean expression φ is true under T ; in

other words, T satisfies φ.

• φ1 and φ2 are equivalent, written

φ1 ≡ φ2,

if for any truth assignment T appropriate to both of

them, T |= φ1 if and only if T |= φ2.
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Truth Tables

• Suppose φ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of φ under it.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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A Second Truth Table

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1
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A Third Truth Table

p ¬p
0 1

1 0
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Proof of Equivalency by the Truth Table:
p ⇒ q ≡ ¬q ⇒ ¬p

p q p ⇒ q ¬q ⇒ ¬p
0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1
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De Morgan’s Lawsa

• De Morgan’s laws state that

¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2,

¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2.

• Here is a proof of the first law:

φ1 φ2 ¬(φ1 ∧ φ2) ¬φ1 ∨ ¬φ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).
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Conjunctive Normal Forms

• A boolean expression φ is in conjunctive normal

form (CNF) if

φ =

n∧
i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression φ is in disjunctive normal form

(DNF) if

φ =

n∨
i=1

Di,

where each implicanta or simply term Di is the

conjunction of zero or more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).

aDi implies φ, thus the term.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184



Clauses and Implicants

• The
∨

of clauses yields a clause.

– For example,

(x1 ∨ x2) ∨ (x1 ∨ ¬x2) ∨ (x2 ∨ x3)

= x1 ∨ x2 ∨ x1 ∨ ¬x2 ∨ x2 ∨ x3.

• The
∧

of implicants yields an implicant.

– For example,

(x1 ∧ x2) ∧ (x1 ∧ ¬x2) ∧ (x2 ∧ x3)

= x1 ∧ x2 ∧ x1 ∧ ¬x2 ∧ x2 ∧ x3.
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Any Expression φ Can Be Converted into CNFs and DNFs

φ = xj:

• This is trivially true.

φ = ¬φ1 and a CNF is sought:

• Turn φ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for φ.

φ = ¬φ1 and a DNF is sought:

• Turn φ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for φ.
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Any Expression φ Can Be Converted into CNFs and DNFs

(continued)

φ = φ1 ∨ φ2 and a DNF is sought:

• Make φ1 and φ2 DNFs.

φ = φ1 ∨ φ2 and a CNF is sought:

• Turn φ1 and φ2 into CNFs,a

φ1 =

n1∧
i=1

Ai, φ2 =

n2∧
j=1

Bj .

• Set

φ =

n1∧
i=1

n2∧
j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression φ Can Be Converted into CNFs and DNFs

(concluded)

φ = φ1 ∧ φ2 and a CNF is sought:

• Make φ1 and φ2 CNFs.

φ = φ1 ∧ φ2 and a DNF is sought:

• Turn φ1 and φ2 into DNFs,

φ1 =

n1∨
i=1

Ai, φ2 =

n2∨
j=1

Bj .

• Set

φ =

n1∨
i=1

n2∨
j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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Functional Completeness

• A set of logical connectives is called functionally

complete if every boolean expression is equivalent to

one involving only these connectives.

• The set {¬,∨,∧} is functionally complete.

– Every boolean expression can be turned into a CNF,

which involves only ¬, ∨, and ∧.
• The sets {¬,∨} and {¬,∧} are functionally complete.

– By the above result and de Morgan’s laws.

• {nand } and {nor } are functionally complete.a

aPeirce (c. 1880); Sheffer (1913).
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Satisfiability

• A boolean expression φ is satisfiable if there is a truth

assignment T appropriate to it such that T |= φ.

• φ is valid or a tautology,a written |= φ, if T |= φ for all

T appropriate to φ.

aWittgenstein (1922). Wittgenstein is one of the most important

philosophers of all time. Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”

“God has arrived,” the great economist Keynes (1883–1946) said of him

on January 18, 1928, “I met him on the 5:15 train.”
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Satisfiability (concluded)

• φ is unsatisfiable or a contradiction if φ is false

under all appropriate truth assignments.

– Or, equivalently, if ¬φ is valid (prove it).

• φ is a contingency if φ is neither a tautology nor a

contradiction.
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Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922),

“Whereof one cannot

speak, thereof one must

be silent.”
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satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF φ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 117).

• A most important problem in settling the “P
?
= NP”

problem (p. 313).
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

φ, is it unsatisfiable?

• validity: Given a boolean expression φ, is it valid?

– φ is valid if and only if ¬φ is unsatisfiable.

– φ and ¬φ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the

truth table method.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195



Relations among sat, unsat, and validity

ContingentValid Unsatisfiable

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : { true, false }n → { true, false }.

• It can be represented by a truth table.

• There are 22
n

such boolean functions.

– We can assign true or false to f for each of the 2n

truth assignments.
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Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false

• A boolean expression expresses a boolean function.

– Think of its truth values under all possible truth

assignments.
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Boolean Functions (continued)

• A boolean function expresses a boolean expression.

–
∨

T |= φ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).

∗ The implicant y1 ∧ · · · ∧ yn is called the minterm

over {x1, . . . , xn } for T .a

– The sizeb is ≤ n2n ≤ 22n.

– This DNF is optimal for the parity function, for

example.c

aSimilar to programmable logic array.
bWe count only the literals here.
cDu & Ko (2000).
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Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Functions (concluded)

Corollary 15 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be

avoided (p. 207).

• The size of the truth table is also O(n2n).a

aThere are 2n n-bit strings.
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{ true, false,∨,∧,¬, x1, x2, . . . }.
– There are n+ 5 sorts.
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Boolean Circuits (concluded)

• Gates with a sort from { true, false, x1, x2, . . . } are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• A boolean function can be realized by infinitely many

equivalent boolean circuits.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203



Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬ �
�

¬

�
�

�
�
 ∨ �

�

∨

�
�

�
�

�
�
 ∧ �

�

∧

�
�

�
�
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An Example

((x1  x2 ) (x3 x4)) (x3 x4))

x1 x2 x3 x4

• Circuits are more economical because of the possibility

of “sharing.”
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circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.a

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

aEssentially the same algorithm as the one on p. 117.
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Somea Boolean Functions Need Exponential Circuitsb

Theorem 16 For any n ≥ 2, there is an n-ary boolean

function f such that no boolean circuits with 2n/(2n) or

fewer gates can compute it.

• There are 22
n

different n-ary boolean functions (p. 197).

• So it suffices to prove that the number of boolean

circuits with 2n/(2n) or fewer gates is less than 22
n

.

aCan be strengthened to “Almost all.”
bRiordan & Shannon (1942); Shannon (1949).
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The Proof (concluded)

• There are at most ((n+ 5)×m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n+ 5)×m2)m < 22
n

when m = 2n/(2n):

m log2((n+ 5)×m2)

= 2n

(
1− log2

4n2

n+5

2n

)

< 2n

for n ≥ 2.
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m choices

n+5 choices

m choices
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Claude Elwood Shannon (1916–2001)

Howard Gardner (1987), “[Shan-

non’s master’s thesis is] possibly the

most important, and also the most

famous, master’s thesis of the cen-

tury.”
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Comments

• The lower bound 2n/(2n) is rather tight because an

upper bound is n2n (p. 199).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same

function.

• Both are fine because we only need an upper bound on

the number of circuits.

• We do not need to consider the outgoing edges because

they have been counted as incoming edges.a

aIf you prove it by considering outgoing edges, the bound will not be

good. (Try it!)
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Relations between Complexity Classes
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It is, I own, not uncommon to be

wrong in theory

and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)

The problem with QE is

it works in practice,

but it doesn’t work in theory.

— Ben Bernanke (2014)
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Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = �f(|x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.
– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.
• Mf ’s running time is bounded by f(n).

aThe textbook calls “�” the quasi-blank symbol. The use of Mf (x)

will become clear in Proposition 17 (p. 217).
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Examples of Proper Functions

• Most “reasonable” functions are proper: c, �logn,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.a

• Nonproper functions when serving as the time bounds

for complexity classes spoil “theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).b

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aFor f(g(n)), we need to add f(n) ≥ n.
bTrakhtenbrot (1964); Borodin (1972). Theorem 7.3 on p. 145 of the

textbook proves it.
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Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ Recall that if M is a TM with input and output,

we exclude the first and last strings.

• M can be deterministic or nondeterministic.
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Precise TMs Are General

Proposition 17 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n+ f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output, of length f(|x |), will serve as a

“yardstick” or an “alarm clock.”

aIt can be deterministic or nondeterministic.

c©2017 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217



The Proof (continued)

• Then M ′ simulates M(x).

• M ′(x) halts when and only when the alarm clock runs

out—even if M halts earlier.

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– Because M ′ stops at the moment the “clock” string

is exhausted—even if M(x) stops earlier, it is precise.

– The time bound is therefore O(|x |+ f(|x |)).
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The Proof (concluded)

• If f is a space bound (sketch):

– M ′ simulates M on the quasi-blanks of Mf ’s output

string.a

– The total space, not counting the input string, is

O(f(n)).

– But we still need a way to make sure there is no

infinite loop.b

aThis is to make sure the space bound is precise.
bSee the proof of Theorem 24 (p. 235).
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Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk)
Δ
=
⋃
j>0

NTIME(nj).
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Important Complexity Classes (concluded)

P
Δ
= TIME(nk),

NP
Δ
= NTIME(nk),

PSPACE
Δ
= SPACE(nk),

NPSPACE
Δ
= NSPACE(nk),

E
Δ
= TIME(2kn),

EXP
Δ
= TIME(2n

k

),

L
Δ
= SPACE(logn),

NL
Δ
= NSPACE(logn).
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Complements of Nondeterministic Classes

• Recall that the complement of L, or L̄, is the language

Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

• R, RE, and coRE are distinct (p. 156).

– Again, coRE contains the complements of languages

in RE, not languages that are not in RE.

• How about coC when C is a complexity class?
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The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C }.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states.a

• Whether nondeterministic classes for time are closed

under complement is not known (see p. 109).

aSee p. 153.
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Comments

• As

coC = {L : L̄ ∈ C },
L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L �∈ coC.
– coC is not defined as C̄.

• For example, suppose C = {{ 2, 4, 6, 8, 10, . . . }, . . . }.
• Then coC = {{ 1, 3, 5, 7, 9, . . . }, . . . }.
• But C̄ = 2{ 1,2,3,... } − {{ 2, 4, 6, 8, 10, . . .}, . . . }.
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