
Is a forged signature the same sort of thing

as a genuine signature,

or is it a different sort of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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Digital Signaturesa

• Alice wants to send Bob a signed document x.

• The signature must unmistakably identifies the sender.

• Both Alice and Bob have public and private keys

eAlice, eBob, dAlice, dBob.

• Every cryptosystem guarantees D(d,E(e, x)) = x.

• Assume the cryptosystem also satisfies the commutative

property

E(e,D(d, x)) = D(d,E(e, x)). (15)

– E.g., the RSA system satisfies it as (xd)e = (xe)d.

aDiffie & Hellman (1976).
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Digital Signatures Based on Public-Key Systems

• Alice signs x as

(x,D(dAlice, x)).

• Bob receives (x, y) and verifies the signature by checking

E(eAlice, y) = E(eAlice, D(dAlice, x)) = x

based on Eq. (15).

• The claim of authenticity is founded on the difficulty of

inverting EAlice without knowing the key dAlice.
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Probabilistic Encryptiona

• A deterministic cryptosystem can be broken if the

plaintext has a distribution that favors the “easy” cases.

• The ability to forge signatures on even a vanishingly

small fraction of strings of some length is a security

weakness if those strings were the probable ones!

• A scheme may also “leak” partial information.

– Parity of the plaintext, e.g.

• The first solution to the problems of skewed distribution

and partial information was based on the QRA.

aGoldwasser and Micali (1982). This paper “laid the framework for

modern cryptography” (2013).
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Shafi Goldwassera (1958–)

aTuring Award (2013).
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Silvio Micalia (1954–)

aTuring Award (2013).
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Goldwasser and Micali

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 650



A Useful Lemma

Lemma 77 Let n = pq be a product of two distinct primes.

Then a number y ∈ Z∗
n is a quadratic residue modulo n if

and only if (y | p) = (y | q) = 1.

• The “only if” part:

– Let x be a solution to x2 = y mod pq.

– Then x2 = y mod p and x2 = y mod q also hold.

– Hence y is a quadratic modulo p and a quadratic

residue modulo q.
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The Proof (concluded)

• The “if” part:

– Let a21 = y mod p and a22 = y mod q.

– Solve

x = a1 mod p,

x = a2 mod q,

for x with the Chinese remainder theorem.

– As x2 = y mod p, x2 = y mod q, and gcd(p, q) = 1,

we must have x2 = y mod pq.
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The Jacobi Symbol and Quadratic Residuacity Test

• The Legendre symbol can be used as a test for quadratic

residuacity by Lemma 64 (p. 538).

• Lemma 77 (p. 651) says this is not the case with the

Jacobi symbol in general.

• Suppose n = pq is a product of two distinct primes.

• A number y ∈ Z∗
n with Jacobi symbol (y | pq) = 1 is a

quadratic nonresidue modulo n when

(y | p) = (y | q) = −1,

because (y | pq) = (y | p)(y | q).
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The Setup

• Bob publishes n = pq, a product of two distinct primes,

and a quadratic nonresidue y with Jacobi symbol 1.

• Bob keeps secret the factorization of n.

• Alice wants to send bit string b1b2 · · · bk to Bob.

• Alice encrypts the bits by choosing a random quadratic

residue modulo n if bi is 1 and a random quadratic

nonresidue (with Jacobi symbol 1) otherwise.

• So a sequence of residues and nonresidues are sent.

• Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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The Protocol for Alice

1: for i = 1, 2, . . . , k do

2: Pick r ∈ Z∗
n randomly;

3: if bi = 1 then

4: Send r2 mod n; {Jacobi symbol is 1.}
5: else

6: Send r2y mod n; {Jacobi symbol is still 1.}
7: end if

8: end for
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The Protocol for Bob

1: for i = 1, 2, . . . , k do

2: Receive r;

3: if (r | p) = 1 and (r | q) = 1 then

4: bi := 1;

5: else

6: bi := 0;

7: end if

8: end for
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Semantic Security

• This encryption scheme is probabilistic.

• There are a large number of different encryptions of a

given message.

• One is chosen at random by the sender to represent the

message.

– Encryption is a one-to-many mapping.

• This scheme is both polynomially secure and

semantically secure.
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What Is a Proof?a

• A proof convinces a party of a certain claim.

– “xn + yn �= zn for all x, y, z ∈ Z
+ and n > 2.”

– “Graph G is Hamiltonian.”

– “xp = x mod p for prime p and p � |x.”
• In mathematics, a proof is a fixed sequence of theorems.

– Think of it as a written examination.

• We will extend a proof to cover a proof process by which

the validity of the assertion is established.

– Recall a job interview or an oral examination.

a“What then do you call proof?” Henry James (1902), The Wings of

the Dove.
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Prover and Verifier

• There are two parties to a proof.

– The prover (Peggy).

– The verifier (Victor).

• Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

• The verifier’s objective is to accept only correct

assertions (soundness).

• The verifier usually has an easier job than the prover.

• The setup is very much like the Turing test.a

aTuring (1950).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659



Interactive Proof Systems

• An interactive proof for a language L is a sequence of

questions and answers between the two parties.

• At the end of the interaction, the verifier decides

whether the claim is true or false.

• The verifier must be a probabilistic polynomial-time

algorithm.

• The prover runs an exponential-time algorithm.a

– If the prover is not more powerful than the verifier,

no interaction is needed!
aSee the problem to Note 12.3.7 on p. 296 and Proposition 19.1 on

p. 475, both of the textbook, about alternative complexity assumptions

without affecting the definition. Contributed by Mr. Young-San Lin

(B97902055) and Mr. Chao-Fu Yang (B97902052) on December 18, 2012.
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Interactive Proof Systems (concluded)

• The system decides L if the following two conditions

hold for any common input x.

– If x ∈ L, then the probability that x is accepted by

the verifier is at least 1− 2−|x |.

– If x �∈ L, then the probability that x is accepted by

the verifier with any prover replacing the original

prover is at most 2−|x |.

• Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |x |.
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An Interactive Proof
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IPa

• IP is the class of all languages decided by an interactive

proof system.

• When x ∈ L, the completeness condition can be

modified to require that the verifier accept with

certainty without affecting IP.b

• Similar things cannot be said of the soundness condition

when x �∈ L.

• Verifier’s coin flips can be public.c

aGoldwasser, Micali, & Rackoff (1985).
bGoldreich, Mansour, & Sipser (1987).
cGoldwasser & Sipser (1989).
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The Relations of IP with Other Classes

• NP ⊆ IP.

– IP becomes NP when the verifier is deterministic and

there is only one round of interaction.a

• BPP ⊆ IP.

– IP becomes BPP when the verifier ignores the

prover’s messages.

• IP = PSPACE.b

aRecall Proposition 36 on p. 312.
bShamir (1990).
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Graph Isomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

isomorphic if there exists a permutation π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1
∼= G2.

• No known polynomial-time algorithms.a

• The problem is in NP (hence IP).

• It is not likely to be NP-complete.b

aThe recent bound of Babai (2015) is 2O(logc n) for some constant c.
bSchöning (1987).
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graph nonisomorphism

• V1 = V2 = { 1, 2, . . . , n }.
• Graphs G1 = (V1, E1) and G2 = (V2, E2) are

nonisomorphic if there exist no permutations π on

{ 1, 2, . . . , n } so that (u, v) ∈ E1 ⇔ (π(u), π(v)) ∈ E2.

• The task is to answer if G1 �∼= G2.

• Again, no known polynomial-time algorithms.

– It is in coNP, but how about NP or BPP?

– It is not likely to be coNP-complete.a

• Surprisingly, graph nonisomorphism ∈ IP.b

aSchöning (1987).
bGoldreich, Micali, & Wigderson (1986).
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A 2-Round Algorithm
1: Victor selects a random i ∈ { 1, 2 };
2: Victor selects a random permutation π on { 1, 2, . . . , n };
3: Victor applies π on graph Gi to obtain graph H;

4: Victor sends (G1, H) to Peggy;

5: if G1
∼= H then

6: Peggy sends j = 1 to Victor;

7: else

8: Peggy sends j = 2 to Victor;

9: end if

10: if j = i then

11: Victor accepts; {G1 �∼= G2.}
12: else

13: Victor rejects; {G1
∼= G2.}

14: end if
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Analysis

• Victor runs in probabilistic polynomial time.

• Suppose G1 �∼= G2.

– Peggy is able to tell which Gi is isomorphic to H, so j = i.

– So Victor always accepts.

• Suppose G1
∼= G2.

– No matter which i is picked by Victor, Peggy or any

prover sees 2 identical copies.

– Peggy or any prover with exponential power has only

probability one half of guessing i correctly.

– So Victor erroneously accepts with probability 1/2.

• Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

• Suppose I know a satisfying assignment to a satisfiable

boolean expression.

• I can convince Alice of this by giving her the assignment.

• But then I give her more knowledge than is necessary.

– Alice can claim that she found the assignment!

– Login authentication faces essentially the same issue.

– See

www.wired.com/wired/archive/1.05/atm pr.html

for a famous ATM fraud in the U.S.
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Knowledge in Proofs (concluded)

• Suppose I always give Alice random bits.

• Alice extracts no knowledge from me by any measure,

but I prove nothing.

• Question 1: Can we design a protocol to convince Alice

(the knowledge) of a secret without revealing anything

extra?

• Question 2: How to define this idea rigorously?

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 670



Zero Knowledge Proofsa

An interactive proof protocol (P, V ) for language L has the

perfect zero-knowledge property if:

• For every verifier V ′, there is an algorithm M with

expected polynomial running time.

• M on any input x ∈ L generates the same probability

distribution as the one that can be observed on the

communication channel of (P, V ′) on input x.

aGoldwasser, Micali, & Rackoff (1985).
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Comments

• Zero knowledge is a property of the prover.

– It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

– The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

– A verifier cannot use the transcript of the interaction

to convince a third-party of the validity of the claim.

– The proof is hence not transferable.
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Comments (continued)

• Whatever a verifier can “learn” from the specified prover

P via the communication channel could as well be

computed from the verifier alone.

• The verifier does not learn anything except “x ∈ L.”

• Zero-knowledge proofs yield no knowledge in the sense

that they can be constructed by the verifier who believes

the statement, and yet these proofs do convince him.
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Comments (continued)

• The “paradox” is resolved by noting that it is not the

transcript of the conversation that convinces the verifier.

• But the fact that this conversation was held “on line.”

• Computational zero-knowledge proofs are based on

complexity assumptions.

– M only needs to generate a distribution that is

computationally indistinguishable from the verifier’s

view of the interaction.
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Comments (concluded)

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in NP.a

• If one-way functions exist, then zero-knowledge proofs

exist for every problem in PSPACE.b

• The verifier can be restricted to the honest one (i.e., it

follows the protocol).c

• The coins can be public.d

• The digital money Zcash (2016) is based on

zero-knowledge proofs.
aGoldreich, Micali, & Wigderson (1986).
bOstrovsky & Wigderson (1993).
cVadhan (2006).
dVadhan (2006).
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Quadratic Residuacity

• Let n be a product of two distinct primes.

• Assume extracting the square root of a quadratic residue

modulo n is hard without knowing the factors.

• We next present a zero-knowledge proof for the input

x ∈ Z∗
n

being a quadratic residue.
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Zero-Knowledge Proof of Quadratic Residuacity

1: for m = 1, 2, . . . , log2 n do

2: Peggy chooses a random v ∈ Z∗
n and sends

y = v2 mod n to Victor;

3: Victor chooses a random bit i and sends it to Peggy;

4: Peggy sends z = uiv mod n, where u is a square root

of x; {u2 ≡ x mod n.}
5: Victor checks if z2 ≡ xiy mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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A Useful Corollary of Lemma 77 (p. 651)

Corollary 78 Let n = pq be a product of two distinct

primes. (1) If x and y are both quadratic residues modulo n,

then xy ∈ Z∗
n is a quadratic residue modulo n. (2) If x is a

quadratic residue modulo n and y is a quadratic nonresidue

modulo n, then xy ∈ Z∗
n is a quadratic nonresidue modulo n.

• Suppose x and y are both quadratic residues modulo n.

• Let x ≡ a2 mod n and y ≡ b2 mod n.

• Now xy is a quadratic residue as xy ≡ (ab)2 mod n.
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The Proof (concluded)

• Suppose x is a quadratic residue modulo n and y is a

quadratic nonresidue modulo n.

• By Lemma 77 (p. 651), (x | p) = (x | q) = 1 but, say,

(y | p) = −1.

• Now xy is a quadratic nonresidue as (xy | p) = −1, again

by Lemma 77 (p. 651).
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Analysis

• Suppose x is a quadratic residue.

– Then x’s square root u can be computed by Peggy.

– Peggy can answer all challenges.

– Now,

z2 ≡ (
ui
)2

v2 ≡ (
u2

)i
v2 ≡ xiy mod n.

– So Victor will accept x.
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Analysis (continued)

• Suppose x is a quadratic nonresidue.

– Corollary 78 (p. 678) says if a is a quadratic residue,

then xa is a quadratic nonresidue.

– As y is a quadratic residue, xiy can be a quadratic

residue (see Line 5) only when i = 0.

– Peggy can answer only one of the two possible

challenges, when i = 0.a

– So Peggy will be caught in any given round with

probability one half.

aLine 5 (z2 ≡ xiy mod n) cannot equate a quadratic residue z2 with

a quadratic nonresidue xiy when i = 1.
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Analysis (continued)

• How about the claim of zero knowledge?

• The transcript between Peggy and Victor when x is a

quadratic residue can be generated without Peggy!

• Here is how.

• Suppose x is a quadratic residue.a

• In each round of interaction with Peggy, the transcript is

a triplet (y, i, z).

• We present an efficient Bob that generates (y, i, z) with

the same probability without accessing Peggy’s power.

aThere is no zero-knowledge requirement when x �∈ L.
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Analysis (concluded)

1: Bob chooses a random z ∈ Z∗
n;

2: Bob chooses a random bit i;

3: Bob calculates y = z2x−i mod n;a

4: Bob writes (y, i, z) into the transcript;

aRecall Line 5 on p. 677: Victor checks if z2 ≡ xiy mod n.
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Comments

• Assume x is a quadratic residue.

• For (y, i, z), y is a random quadratic residue, i is a

random bit, and z is a random number.

• Bob cheats because (y, i, z) is not generated in the same

order as in the original transcript.

– Bob picks Peggy’s answer z first.

– Bob then picks Victor’s challenge i.

– Bob finally patches the transcript.
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Comments (concluded)

• So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

• The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy.

• But we skip the details.a

aOr apply Vadhan (2006).
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Zero-Knowledge Proof of 3 Colorabilitya

1: for i = 1, 2, . . . , |E |2 do

2: Peggy chooses a random permutation π of the 3-coloring φ;

3: Peggy samples encryption schemes randomly, commitsb them,

and sends π(φ(1)), π(φ(2)), . . . , π(φ(|V |)) encrypted to Victor;

4: Victor chooses at random an edge e ∈ E and sends it to Peggy

for the coloring of the endpoints of e;

5: if e = (u, v) ∈ E then

6: Peggy reveals the colors π(φ(u)) and π(φ(v)) and “proves”

that they correspond to their encryptions;

7: else

8: Peggy stops;

9: end if

aGoldreich, Micali, & Wigderson (1986).
bContributed by Mr. Ren-Shuo Liu (D98922016) on December 22,

2009.
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10: if the “proof” provided in Line 6 is not valid then

11: Victor rejects and stops;

12: end if

13: if π(φ(u)) = π(φ(v)) or π(φ(u)), π(φ(v)) �∈ { 1, 2, 3 } then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;
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Analysis

• If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

• Suppose the graph is not 3-colorable and Victor follows

the protocol.

• Let e be an edge that is not colored legally.

• Victor will pick it with probability 1/m per round,

where m = |E |.
• Then however Peggy plays, Victor will reject with

probability at least 1/m per round.
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Analysis (concluded)

• So Victor will accept with probability at most

(
1−m−1

)m2

≤ e−m.

• Thus the protocol is a valid IP protocol.

• This protocol yields no knowledge to Victor as all he

gets is a bunch of random pairs.

• The proof that the protocol is zero-knowledge to any

verifier is intricate.a

aBut no longer necessary because of Vadhan (2006).
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Comments

• Each π(φ(i)) is encrypted by a different cryptosystem in

Line 3.a

– Otherwise, all the colors will be revealed in Line 6.

• Each edge e must be picked randomly.b

– Otherwise, Peggy will know Victor’s game plan and

plot accordingly.

aContributed by Ms. Yui-Huei Chang (R96922060) on May 22, 2008
bContributed by Mr. Chang-Rong Hung (R96922028) on May 22, 2008
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Approximability
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All science is dominated by

the idea of approximation.

— Bertrand Russell (1872–1970)
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Just because the problem is NP-complete

does not mean that

you should not try to solve it.

— Stephen Cook (2002)
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Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP �= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP �= P)?
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Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z
+.

– Here, cost refers to the quality of the feasible

solution, not the time required to obtain it.

– It is our objective function: total distance, number

of satisfied clauses, cut size, etc.
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Some Definitions (concluded)

• The optimum cost is

opt(x) = min
s∈F (x)

c(s)

for a minimization problem.

• It is

opt(x) = max
s∈F (x)

c(s)

for a maximization problem.
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Approximation Algorithms

• Let (polynomial-time) algorithm M on x returns a

feasible solution.

• M is an ε-approximation algorithm, where ε ≥ 0, if

for all x,
| c(M(x))− opt(x) |
max(opt(x), c(M(x)))

≤ ε.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)

c(M(x))
≤ ε.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))

maxs∈F (x) c(s)
≤ ε. (16)
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Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤ mins∈F (x) c(s)

1− ε
.

• For a maximization problem,

(1− ε)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (17)
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Lower and Upper Bounds (concluded)

• ε ranges between 0 (best) and 1 (worst).

• For minimization problems, an ε-approximation

algorithm returns solutions within[
opt,

opt

1− ε

]
.

• For maximization problems, an ε-approximation

algorithm returns solutions within

[ (1− ε)× opt,opt ].
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Approximation Thresholds

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ε for which there

is a polynomial-time ε-approximation algorithm.

• But sometimes ε has no minimum value.

• The approximation threshold is the greatest lower

bound of all ε ≥ 0 such that there is a polynomial-time

ε-approximation algorithm.

• By a standard theorem in real analysis, such a threshold

exists.a

aBauldry (2009).
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Approximation Thresholds (concluded)

• The approximation threshold of an optimization

problem is anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So assume P �= NP for the rest of the discussion.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 701



Approximation Ratio

• ε-approximation algorithms can also be measured via

the approximation ratio:a

c(M(x))

opt(x)
.

• For a minimization problem, the approximation ratio is

1 ≤ c(M(x))

mins∈F (x) c(s)
≤ 1

1− ε
. (18)

• For a maximization problem, the approximation ratio is

1− ε ≤ c(M(x))

maxs∈F (x) c(s)
≤ 1. (19)

aWilliamson and Shmoys (2011).
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Approximation Ratio (concluded)

• Suppose there is an approximation algorithm that

achieves an approximation ratio of θ.

– For a minimization problem, it implies a

(1− θ−1)-approximation algorithm by Eq. (18).

– For a maximization problem, it implies a

(1− θ)-approximation algorithm by Eq. (19).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 703



node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio ofa

c(M(x))

opt(x)
= Θ(logn).

• So it is not an ε-approximation algorithm for any

constant ε < 1 according to Eq. (18) on p. 702.

aChvátal (1979).
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A 0.5-Approximation Algorithma

1: C := ∅;
2: while E �= ∅ do

3: Delete an arbitrary edge [u, v ] from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u or v from E;

6: end while

7: return C;

aGavril (1974).
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Analysis

• It is easy to see that C is a node cover.

• C contains |C |/2 edges.a

• No two edges of C share a node.b

• Any node cover C ′ must contain at least one node from

each of the edges of C.

– If there is an edge in C both of whose ends are

outside C ′, then C ′ will not be a cover.

aThe edges deleted in Line 3.
bIn fact, C as a set of edges is a maximal matching.
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Analysis (continued)
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Analysis (concluded)

• This means that opt(G) ≥ |C |/2.
• The approximation ratio is hence

|C |
opt(G)

≤ 2.

• So we have a 0.5-approximation algorithm.a

• And the approximation threshold is therefore ≤ 0.5.

aRecall p. 703.
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The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. Recall that König’s theorem says the size of a maximum matching

equals that of a minimum node cover in a bipartite graph.
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Remarks

• The approximation threshold is at leasta

1−
(
10
√
5− 21

)−1

≈ 0.2651.

• The approximation threshold is 0.5 if one assumes the

unique games conjecture (ugc).b

• This ratio 0.5 is also the lower bound for any “greedy”

algorithms.c

aDinur & Safra (2002).
bKhot & Regev (2008).
cDavis & Impagliazzo (2004).
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