The Markov Inequality ${ }^{\text {a }}$

Lemma 62 Let x be a random variable taking nonnegative integer values. Then for any $k>0$,

$$
\operatorname{prob}[x \geq k E[x]] \leq 1 / k .
$$

- Let p_{i} denote the probability that $x=i$.

$$
\begin{aligned}
E[x] & =\sum_{i} i p_{i}=\sum_{i<k E[x]} i p_{i}+\sum_{i \geq k E[x]} i p_{i} \\
& \geq \sum_{i \geq k E[x]} i p_{i} \geq k E[x] \sum_{i \geq k E[x]} p_{i} \\
& \geq k E[x] \times \operatorname{prob}[x \geq k E[x]] .
\end{aligned}
$$

${ }^{\text {a }}$ Andrei Andreyevich Markov (1856-1922).

Andrei Andreyevich Markov (1856-1922)

FSAT for k-SAT Formulas (p. 484)

- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a k-sAT formula.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next propose a randomized algorithm for this problem.

A Random Walk Algorithm for ϕ in CNF Form

1: Start with an arbitrary truth assignment T;
2: for $i=1,2, \ldots, r$ do
3: \quad if $T \models \phi$ then
4: return " ϕ is satisfiable with T ";
5: else
6: \quad Let c be an unsatisfied clause in ϕ under T; \{All of its literals are false under T.\}
7: \quad Pick any x of these literals at random;
8: \quad Modify T to make x true;
9: end if
10: end for
11: return " ϕ is unsatisfiable";

3sAT vs. 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will answer "unsatisfiable."
- The random walk algorithm needs expected exponential time for 3sat.
- In fact, it runs in expected $O\left((1.333 \cdots+\epsilon)^{n}\right)$ time with $r=3 n,{ }^{\mathrm{a}}$ much better than $O\left(2^{n}\right) .{ }^{\mathrm{b}}$
- We will show immediately that it works well for 2 Sat.
- The state of the art as of 2006 is expected $O\left(1.322^{n}\right)$ time for 3sat and expected $O\left(1.474^{n}\right)$ time for 4 Sat. ${ }^{\text {c }}$

[^0]
Random Walk Works for $2 \mathrm{SAT}^{\text {a }}$

Theorem 63 Suppose the random walk algorithm with $r=2 n^{2}$ is applied to any satisfiable 2SAT problem with n variables. Then a satisfying truth assignment will be discovered with probability at least 0.5.

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Assume our starting T differs from \hat{T} in i values.
- Their Hamming distance is i.
- Recall T is arbitrary.

[^1]
The Proof

- Let $t(i)$ denote the expected number of repetitions of the flipping step ${ }^{\text {a }}$ until a satisfying truth assignment is found.
- It can be shown that $t(i)$ is finite.
- $t(0)=0$ because it means that $T=\hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or any other satisfying truth assignment, then we need to flip the coin at least once.
- We flip a coin to pick among the 2 literals of a clause not satisfied by the present T.
- At least one of the 2 literals is true under \hat{T} because \hat{T} satisfies all clauses.
${ }^{\text {a }}$ That is, Statement 7.

The Proof (continued)

- So we have at least 0.5 chance of moving closer to \hat{T}.
- Thus

$$
t(i) \leq \frac{t(i-1)+t(i+1)}{2}+1
$$

for $0<i<n$.

- Inequality is used because, for example, T may differ from \hat{T} in both literals.
- It must also hold that

$$
t(n) \leq t(n-1)+1
$$

because at $i=n$, we can only decrease i.

The Proof (continued)

- Now, put the necessary relations together:

$$
\begin{align*}
t(0) & =0 \tag{9}\\
t(i) & \leq \frac{t(i-1)+t(i+1)}{2}+1, \quad 0<i<n \tag{10}\\
t(n) & \leq t(n-1)+1 \tag{11}
\end{align*}
$$

- Technically, this is a one-dimensional random walk with an absorbing barrier at $i=0$ and a reflecting barrier at $i=n$ (if we replace " \leq " with "="). ${ }^{\text {a }}$

[^2]
The Proof (continued)

- Add up the relations for $2 t(1), 2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain ${ }^{\text {a }}$

$$
\begin{array}{ll}
& 2 t(1)+2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(0)+t(1)+2 t(2)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-1)+1
\end{array}
$$

- Simplify it to yield

$$
\begin{equation*}
t(1) \leq 2 n-1 \tag{12}
\end{equation*}
$$

${ }^{\text {a }}$ Adding up the relations for $t(1), t(2), t(3), \ldots, t(n-1)$ will also work, thanks to Mr. Yen-Wu Ti (D91922010).

The Proof (continued)

- Add up the relations for $2 t(2), 2 t(3), \ldots, 2 t(n-1), t(n)$ to obtain

$$
\begin{array}{ll}
& 2 t(2)+\cdots+2 t(n-1)+t(n) \\
\leq & t(1)+t(2)+2 t(3)+\cdots+2 t(n-2)+2 t(n-1)+t(n) \\
& +2(n-2)+1
\end{array}
$$

- Simplify it to yield

$$
t(2) \leq t(1)+2 n-3 \leq 2 n-1+2 n-3=4 n-4
$$

by Eq. (12) on p. 528.

The Proof (continued)

- Continuing the process, we shall obtain

$$
t(i) \leq 2 i n-i^{2} .
$$

- The worst upper bound happens when $i=n$, in which case

$$
t(n) \leq n^{2}
$$

- We conclude that

$$
t(i) \leq t(n) \leq n^{2}
$$

for $0 \leq i \leq n$.

The Proof (concluded)

- So the expected number of steps is at most n^{2}.
- The algorithm picks $r=2 n^{2}$.
- This amounts to invoking the Markov inequality (p. 519) with $k=2$, resulting in a probability of 0.5 .
- The proof does not yield a polynomial bound for 3sat. ${ }^{\text {a }}$
${ }^{\text {a }}$ Contributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

Boosting the Performance

- We can pick $r=2 m n^{2}$ to have an error probability of

$$
\leq \frac{1}{2 m}
$$

by Markov's inequality.

- Alternatively, with the same running time, we can run the " $r=2 n^{2}$ " algorithm m times.
- The error probability is now reduced to

$$
\leq 2^{-m}
$$

Primality Tests

- PRIMES asks if a number N is a prime.
- The classic algorithm tests if $k \mid N$ for $k=2,3, \ldots, \sqrt{N}$.
- But it runs in $\Omega\left(2^{\left(\log _{2} N\right) / 2}\right)$ steps.

Primality Tests (concluded)

- Suppose $N=P Q$ is a product of 2 distinct primes.
- The probability of success of the density attack (p. 468) is

$$
\approx \frac{2}{\sqrt{N}}
$$

when $P \approx Q$.

- This probability is exponentially small in terms of the input length $\log _{2} N$.

The Fermat Test for Primality

Fermat's "little" theorem (p. 471) suggests the following primality test for any given number N :
1: Pick a number a randomly from $\{1,2, \ldots, N-1\}$;
2: if $a^{N-1} \not \equiv 1 \bmod N$ then
3: return " N is composite";
4: else
5: return " N is (probably) a prime";
6: end if

The Fermat Test for Primality (concluded)

- Carmichael numbers are composite numbers that will pass the Fermat test for all $a \in\{1,2, \ldots, N-1\}$. ${ }^{\text {a }}$
- The Fermat test will return " N is a prime" for all Carmichael numbers N.
- Unfortunately, there are infinitely many Carmichael numbers. ${ }^{\text {b }}$
- In fact, the number of Carmichael numbers less than N exceeds $N^{2 / 7}$ for N large enough.
- So the Fermat test is an incorrect algorithm for primes.

[^3]
Square Roots Modulo a Prime

- Equation $x^{2} \equiv a \bmod p$ has at most two (distinct) roots by Lemma 59 (p. 476).
- The roots are called square roots.
- Numbers a with square roots and $\operatorname{gcd}(a, p)=1$ are called quadratic residues.
* They are

$$
1^{2} \bmod p, 2^{2} \bmod p, \ldots,(p-1)^{2} \bmod p
$$

- We shall show that a number either has two roots or has none, and testing which is the case is trivial. ${ }^{\text {a }}$

[^4]
Euler's Test

Lemma 64 (Euler) Let p be an odd prime and $a \neq 0 \bmod p$.

1. If

$$
a^{(p-1) / 2} \equiv 1 \bmod p,
$$

then $x^{2} \equiv a \bmod p$ has two roots.
2. If

$$
a^{(p-1) / 2} \not \equiv 1 \bmod p,
$$

then

$$
a^{(p-1) / 2} \equiv-1 \bmod p
$$

and $x^{2} \equiv a \bmod p$ has no roots.

The Proof (continued)

- Let r be a primitive root of p.
- Fermat's "little" theorem says $r^{p-1} \equiv 1 \bmod p$, so

$$
r^{(p-1) / 2}
$$

is a square root of 1 .

- In particular,

$$
r^{(p-1) / 2} \equiv 1 \text { or }-1 \bmod p
$$

- But as r is a primitive root, $r^{(p-1) / 2} \not \equiv 1 \bmod p$.
- Hence $r^{(p-1) / 2} \equiv-1 \bmod p$.

The Proof (continued)

- Let $a=r^{k} \bmod p$ for some k.
- Then

$$
1 \equiv a^{(p-1) / 2} \equiv r^{k(p-1) / 2} \equiv\left[r^{(p-1) / 2}\right]^{k} \equiv(-1)^{k} \bmod p
$$

- So k must be even.

The Proof (continued)

- Suppose $a=r^{2 j} \bmod p$ for some $1 \leq j \leq(p-1) / 2$.
- Then

$$
a^{(p-1) / 2} \equiv r^{j(p-1)} \equiv 1 \bmod p
$$

- The two distinct roots of a are

$$
r^{j},-r^{j}\left(\equiv r^{j+(p-1) / 2} \bmod p\right) .
$$

- If $r^{j} \equiv-r^{j} \bmod p$, then $2 r^{j} \equiv 0 \bmod p$, which implies $r^{j} \equiv 0 \bmod p$, a contradiction as r is a primitive root.

The Proof (continued)

- As $1 \leq j \leq(p-1) / 2$, there are $(p-1) / 2$ such a 's.
- Each such $a \equiv r^{2 j} \bmod p$ has 2 distinct square roots.
- The square roots of all these a 's are distinct.
- The square roots of different a's must be different.
- Hence the set of square roots is $\{1,2, \ldots, p-1\}$.
- As a result,

$$
a=r^{2 j} \bmod p, 1 \leq j \leq(p-1) / 2
$$

exhaust all the quadratic residues.

The Proof (concluded)

- Suppose $a=r^{2 j+1} \bmod p$ now.
- Then it has no square roots because all the square roots have been taken.
- Finally,

$$
a^{(p-1) / 2} \equiv\left[r^{(p-1) / 2}\right]^{2 j+1} \equiv(-1)^{2 j+1} \equiv-1 \bmod p
$$

The Legendre Symbol ${ }^{\text {a }}$ and Quadratic Residuacity Test

- By Lemma 64 (p. 538),

$$
a^{(p-1) / 2} \bmod p= \pm 1
$$

for $a \not \equiv 0 \bmod p$.

- For odd prime p, define the Legendre symbol $(a \mid p)$ as

$$
(a \mid p)= \begin{cases}0 & \text { if } p \mid a \\ 1 & \text { if } a \text { is a quadratic residue modulo } p \\ -1 & \text { if } a \text { is a quadratic nonresidue modulo } p\end{cases}
$$

- It is sometimes pronounced " a over p."

[^5]The Legendre Symbol and Quadratic Residuacity Test (concluded)

- Euler's test (p. 538) implies

$$
a^{(p-1) / 2} \equiv(a \mid p) \bmod p
$$

for any odd prime p and any integer a.

- Note that $(a b \mid p)=(a \mid p)(b \mid p)$.

Gauss's Lemma

Lemma 65 (Gauss) Let p and q be two distinct odd primes. Then $(q \mid p)=(-1)^{m}$, where m is the number of residues in $R=\{i q \bmod p: 1 \leq i \leq(p-1) / 2\}$ that are greater than $(p-1) / 2$.

- All residues in R are distinct.
- If $i q=j q \bmod p$, then $p \mid(j-i)$ or $p \mid q$.
- But neither is possible.
- No two elements of R add up to p.
- If $i q+j q \equiv 0 \bmod p$, then $p \mid(i+j)$ or $p \mid q$.
- But neither is possible.

The Proof (continued)

- Replace each of the m elements $a \in R$ such that $a>(p-1) / 2$ by $p-a$.
- This is equivalent to performing $-a \bmod p$.
- Call the resulting set of residues R^{\prime}.
- All numbers in R^{\prime} are at most $(p-1) / 2$.
- In fact, $R^{\prime}=\{1,2, \ldots,(p-1) / 2\}$ (see illustration next page).
- Otherwise, two elements of R would add up to $p,{ }^{\text {a }}$ which has been shown to be impossible.

[^6]

The Proof (concluded)

- Alternatively, $R^{\prime}=\{ \pm i q \bmod p: 1 \leq i \leq(p-1) / 2\}$, where exactly m of the elements have the minus sign.
- Take the product of all elements in the two representations of R^{\prime}.
- So

$$
[(p-1) / 2]!=(-1)^{m} q^{(p-1) / 2}[(p-1) / 2]!\bmod p
$$

- Because $\operatorname{gcd}([(p-1) / 2]!, p)=1$, the above implies

$$
1=(-1)^{m} q^{(p-1) / 2} \bmod p .
$$

Legendre's Law of Quadratic Reciprocity ${ }^{\text {a }}$

- Let p and q be two distinct odd primes.
- The next result says $(p \mid q)$ and $(q \mid p)$ are distinct if and only if both p and q are $3 \bmod 4$.

Lemma 66 (Legendre (1785), Gauss)

$$
(p \mid q)(q \mid p)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
$$

[^7]
The Proof (continued)

- Sum the elements of R^{\prime} in the previous proof in $\bmod 2$.
- On one hand, this is just $\sum_{i=1}^{(p-1) / 2} i \bmod 2$.
- On the other hand, the sum equals

$$
\begin{aligned}
& m p+\sum_{i=1}^{(p-1) / 2}\left(i q-p\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2 \\
= & m p+\left(q \sum_{i=1}^{(p-1) / 2} i-p \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2 .
\end{aligned}
$$

- m of the $i q \bmod p$ are replaced by $p-i q \bmod p$.
- But signs are irrelevant under mod 2 .
- m is as in Lemma 65 (p. 546).

The Proof (continued)

- Ignore odd multipliers to make the sum equal

$$
m+\left(\sum_{i=1}^{(p-1) / 2} i-\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor\right) \bmod 2
$$

- Equate the above with $\sum_{i=1}^{(p-1) / 2} i$ modulo 2 and simplify to obtain

$$
m \equiv \sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor \bmod 2
$$

The Proof (continued)

- $\sum_{i=1}^{(p-1) / 2}\left\lfloor\frac{i q}{p}\right\rfloor$ is the number of integral points below the line

$$
y=(q / p) x
$$

for $1 \leq x \leq(p-1) / 2$.

- Gauss's lemma (p. 546) says $(q \mid p)=(-1)^{m}$.
- Repeat the proof with p and q reversed.
- Then $(p \mid q)=(-1)^{m^{\prime}}$, where m^{\prime} is the number of integral points above the line $y=(q / p) x$ for $1 \leq y \leq(q-1) / 2$.

The Proof (concluded)

- As a result,

$$
(p \mid q)(q \mid p)=(-1)^{m+m^{\prime}}
$$

- But $m+m^{\prime}$ is the total number of integral points in the $\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]$ rectangle, which is

$$
\frac{p-1}{2} \frac{q-1}{2} .
$$

Eisenstein's Rectangle

Above, $p=11, q=7, m=7, m^{\prime}=8$.

The Jacobi Symbol ${ }^{\text {a }}$

- The Legendre symbol only works for odd prime moduli.
- The Jacobi symbol $(a \mid m)$ extends it to cases where m is not prime.
- a is sometimes called the numerator and m the denominator.
- Define $(a \mid 1)=1$.
${ }^{\text {a }}$ Carl Jacobi (1804-1851).

The Jacobi Symbol (concluded)

- Let $m=p_{1} p_{2} \cdots p_{k}$ be the prime factorization of m.
- When $m>1$ is odd and $\operatorname{gcd}(a, m)=1$, then

$$
(a \mid m)=\prod_{i=1}^{k}\left(a \mid p_{i}\right) .
$$

- Note that the Jacobi symbol equals ± 1.
- It reduces to the Legendre symbol when m is a prime.

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. $(a b \mid m)=(a \mid m)(b \mid m)$.
2. $\left(a \mid m_{1} m_{2}\right)=\left(a \mid m_{1}\right)\left(a \mid m_{2}\right)$.
3. If $a \equiv b \bmod m$, then $(a \mid m)=(b \mid m)$.
4. $(-1 \mid m)=(-1)^{(m-1) / 2}$ (by Lemma 65 on p. 546).
5. $(2 \mid m)=(-1)^{\left(m^{2}-1\right) / 8}$. ${ }^{\text {a }}$
6. If a and m are both odd, then

$$
(a \mid m)(m \mid a)=(-1)^{(a-1)(m-1) / 4} .
$$

[^8]
Properties of the Jacobi Symbol (concluded)

- These properties allow us to calculate the Jacobi symbol without factorization.
- It will also yield the same result as Euler's test (p. 538) when m is an odd prime.
- This situation is similar to the Euclidean algorithm.
- Note also that $(a \mid m)=1 /(a \mid m)$ because $(a \mid m)= \pm 1$. ${ }^{a}$
${ }^{\text {a }}$ Contributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.

Calculation of (2200|999)

$$
\begin{aligned}
(2200 \mid 999) & =(202 \mid 999) \\
& =(2 \mid 999)(101 \mid 999) \\
& =(-1)^{\left(999^{2}-1\right) / 8}(101 \mid 999) \\
& =(-1)^{124750}(101 \mid 999)=(101 \mid 999) \\
& =(-1)^{(100)(998) / 4}(999 \mid 101)=(-1)^{24950}(999 \mid 101) \\
& =(999 \mid 101)=(90 \mid 101)=(-1)^{\left(101^{2}-1\right) / 8}(45 \mid 101) \\
& =(-1)^{1275}(45 \mid 101)=-(45 \mid 101) \\
& =-(-1)^{(44)(100) / 4}(101 \mid 45)=-(101 \mid 45)=-(11 \mid 45) \\
& =-(-1)^{(10)(44) / 4}(45 \mid 11)=-(45 \mid 11) \\
& =-(1 \mid 11)=-1 .
\end{aligned}
$$

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 67 The group of set $\Phi(n)$ under multiplication $\bmod n$ has a primitive root if and only if n is either 1, 2, 4, p^{k}, or $2 p^{k}$ for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.

The Jacobi Symbol and Primality Test ${ }^{\text {a }}$

Lemma 68 If $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ for all $M \in \Phi(N)$, then N is a prime. (Assume N is odd.)

- Assume $N=m p$, where p is an odd prime, $\operatorname{gcd}(m, p)=1$, and $m>1$ (not necessarily prime).
- Let $r \in \Phi(p)$ such that $(r \mid p)=-1$.
- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p \\
M & =1 \bmod m .
\end{aligned}
$$

[^9]
The Proof (continued)

- By the hypothesis,

$$
M^{(N-1) / 2}=(M \mid N)=(M \mid p)(M \mid m)=-1 \bmod N .
$$

- Hence

$$
M^{(N-1) / 2}=-1 \bmod m .
$$

- But because $M=1 \bmod m$,

$$
M^{(N-1) / 2}=1 \bmod m,
$$

a contradiction.

The Proof (continued)

- Second, assume that $N=p^{a}$, where p is an odd prime and $a \geq 2$.
- By Theorem 67 (p. 561), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- As $r \in \Phi(N)$ (prove it), we have

$$
r^{N-1}=1 \bmod N
$$

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid(N-1),
$$

which implies that $p \mid(N-1)$.

- But this is impossible given that $p \mid N$.

The Proof (continued)

- Third, assume that $N=m p^{a}$, where p is an odd prime, $\operatorname{gcd}(m, p)=1, m>1$ (not necessarily prime), and a is even.
- The proof mimics that of the second case.
- By Theorem 67 (p. 561), there exists a primitive root r modulo p^{a}.
- From the assumption,

$$
M^{N-1}=\left[M^{(N-1) / 2}\right]^{2}=(M \mid N)^{2}=1 \bmod N
$$

for all $M \in \Phi(N)$.

The Proof (continued)

- In particular,

$$
\begin{equation*}
M^{N-1}=1 \bmod p^{a} \tag{13}
\end{equation*}
$$

for all $M \in \Phi(N)$.

- The Chinese remainder theorem says that there is an $M \in \Phi(N)$ such that

$$
\begin{aligned}
M & =r \bmod p^{a}, \\
M & =1 \bmod m .
\end{aligned}
$$

- Because $M=r \bmod p^{a}$ and Eq. (13),

$$
r^{N-1}=1 \bmod p^{a} .
$$

The Proof (concluded)

- As r 's exponent modulo $N=p^{a}$ is $\phi(N)=p^{a-1}(p-1)$,

$$
p^{a-1}(p-1) \mid(N-1),
$$

which implies that $p \mid(N-1)$.

- But this is impossible given that $p \mid N$.

The Number of Witnesses to Compositeness

Theorem 69 (Solovay and Strassen (1977)) If N is an odd composite, then $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 68 (p. 562) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \not \equiv a^{(N-1) / 2} \bmod N$.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subseteq \Phi(N)$ be the set of all distinct residues such that $\left(b_{i} \mid N\right) \equiv b_{i}^{(N-1) / 2} \bmod N$.
- Let $a B=\left\{a b_{i} \bmod N: i=1,2, \ldots, k\right\}$.
- Clearly, $a B \subseteq \Phi(N)$, too.

The Proof (concluded)

- $|a B|=k$.
- $a b_{i} \equiv a b_{j} \bmod N$ implies $N \mid a\left(b_{i}-b_{j}\right)$, which is impossible because $\operatorname{gcd}(a, N)=1$ and $N>\left|b_{i}-b_{j}\right|$.
- $a B \cap B=\emptyset$ because

$$
\left(a b_{i}\right)^{(N-1) / 2} \equiv a^{(N-1) / 2} b_{i}^{(N-1) / 2} \not \equiv(a \mid N)\left(b_{i} \mid N\right) \equiv\left(a b_{i} \mid N\right)
$$

- Combining the above two results, we know

$$
\frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup a B|}=0.5 .
$$

1: if N is even but $N \neq 2$ then
2: return " N is composite";
3: else if $N=2$ then
4: return " N is a prime";
5: end if
6: Pick $M \in\{2,3, \ldots, N-1\}$ randomly;
7: if $\operatorname{gcd}(M, N)>1$ then
8: return " N is composite";
9: else
10: \quad if $(M \mid N) \equiv M^{(N-1) / 2} \bmod N$ then
11: return " N is (probably) a prime";
12: else
13: return " N is composite";
14: end if
15: end if

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for Compositeness).
- When the algorithm says the number is composite, it is always correct.

Analysis (concluded)

- The probability of a false negative (again, for COMPOSITENESS) is at most one half.
- Suppose the input is composite.
- By Theorem 69 (p. 569),
prob[algorithm answers "no" $\mid N$ is composite $] \leq 0.5$.
- Note that we are not referring to the probability that N is composite when the algorithm says "no."
- So it is a Monte Carlo algorithm for Compositeness. ${ }^{\text {a }}$

[^10]The Improved Density Attack for Compositeness

Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
- If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where $n=|x|$.
- If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time). ${ }^{\text {a }}$

[^11]
Comments on RP

- In analogy to Proposition 36 (p. 312), a "yes" instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of probability.
- If $x \in L$, then $N(x)$ halts with "yes" with probability at least 0.5 .
- If $x \notin L$, then $N(x)$ halts with "no."

Comments on RP (concluded)

- The probability of false negatives is $\epsilon \leq 0.5$.
- But any constant between 0 and 1 can replace 0.5.
- Repeat the algorithm $k=\left\lceil-\frac{1}{\log _{2} \epsilon}\right\rceil$ times and answer "no" only if all the runs answer "no."
- The probability of false negatives becomes $\epsilon^{k} \leq 0.5$.

Where RP Fits

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$.
- A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
- A Monte Carlo TM is an NTM with more demands on the number of accepting paths.
- COMPOSItENESS $\in R P ;{ }^{\text {a }}$ Primes \in coRP; PRIMES \in RP. ${ }^{\text {b }}$
- In fact, PRIMES \in P. ${ }^{\text {c }}$
- RP \cup coRP is an alternative "plausible" notion of efficient computation.

[^12]
[^0]: ${ }^{\text {a }}$ Use this setting per run of the algorithm.
 ${ }^{\text {b }}$ Schöning (1999).
 ${ }^{\text {c }}$ Kwama and Tamaki (2004); Rolf (2006).

[^1]: ${ }^{\text {a Papadimitriou (1991). }}$

[^2]: ${ }^{\text {a }}$ The proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

[^3]: ${ }^{\text {a }}$ Carmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!
 ${ }^{\mathrm{b}}$ Alford, Granville, and Pomerance (1992).

[^4]: ${ }^{\text {a }}$ But no efficient deterministic general-purpose square-root-extracting algorithms are known yet.

[^5]: ${ }^{\text {a }}$ Andrien-Marie Legendre (1752-1833).

[^6]: ${ }^{\text {a }}$ Because $i q \equiv-j q \bmod p$ for some $i \neq j$.

[^7]: ${ }^{\text {a }}$ First stated by Euler in 1751. Legendre (1785) did not give a correct proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990). As of 2008, there have been 4 such proofs. Wiedijk (2008), "the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum."

[^8]: ${ }^{\text {a }}$ By Lemma 65 (p. 546) and some parity arguments.

[^9]: ${ }^{\text {a }}$ Mr. Clement Hsiao (B4506061, R88526067) pointed out that the textbook's proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.

[^10]: ${ }^{\text {a Not PRIMES. }}$

[^11]: ${ }^{\text {a Adleman }}$ and Manders (1977).

[^12]: ${ }^{\text {a }}$ Rabin (1976) and Solovay and Strassen (1977).
 ${ }^{\mathrm{b}}$ Adleman and Huang (1987).
 ${ }^{c}$ Agrawal, Kayal, and Saxena (2002).

