
Basic Modular Arithmeticsa

• Let m,n ∈ Z
+.

• m |n means m divides n; m is n’s divisor.

• We call the numbers 0, 1, . . . , n− 1 the residue modulo

n.

• The greatest common divisor of m and n is denoted

gcd(m,n).

• The r in Theorem 51 (p. 448) is a primitive root of p.

aCarl Friedrich Gauss.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459

Basic Modular Arithmetics (concluded)

• We use

a ≡ b mod n

if n | (a− b).

– So 25 ≡ 38 mod 13.

• We use

a = b mod n

if b is the remainder of a divided by n.

– So 25 = 12 mod 13.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 460

Euler’sa Totient or Phi Function

• Let

Φ(n) = {m : 1 ≤ m < n, gcd(m,n) = 1 }
be the set of all positive integers less than n that are

prime to n.b

– Φ(12) = { 1, 5, 7, 11 }.
• Define Euler’s function of n to be φ(n) = |Φ(n) |.
• φ(p) = p− 1 for prime p, and φ(1) = 1 by convention.

• Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

aLeonhard Euler (1707–1783).
bZ∗

n is an alternative notation.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 461

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462

Leonhard Euler (1707–1783)

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463

Three Properties of Euler’s Function

The inclusion-exclusion principlea can be used to prove the

following.

Lemma 54 φ(n) = n
∏

p|n(1− 1
p).

• If n = pe11 pe22 · · · pe�� is the prime factorization of n, then

φ(n) = n
�∏

i=1

(
1− 1

pi

)
.

Corollary 55 φ(mn) = φ(m)φ(n) if gcd(m,n) = 1.

Lemma 56
∑

m|n φ(m) = n.

aConsult any textbooks on discrete mathematics.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464

The Density Attack for primes

Witnesses to
compositeness

of n

All numbers < n

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465

The Density Attack for primes

1: Pick k ∈ { 1, . . . , n } randomly;

2: if k |n and k �= 1 and k �= n then

3: return “n is composite”;

4: else

5: return “n is (probably) a prime”;

6: end if

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466

The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the

white ring) is
φ(n)

n
.

• When n = pq, where p and q are distinct primes,

φ(n)

n
=

pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467

The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the gray area) is < (1/q) + (1/p).

– The “density attack” has probability about 2/
√
n of

factoring n = pq when p ∼ q = O(
√
n).

– The “density attack” to factor n = pq hence takes

Ω(
√
n) steps on average when p ∼ q = O(

√
n).

– This running time is exponential: Ω(20.5 log2 n).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 468

The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469

Fermat’s “Little” Theorema

Lemma 57 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = { 1, 2, . . . , p− 1 }.
• Consider aΦ(p) = { am mod p : m ∈ Φ(p) }.
• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am ≡ am′ mod p for m > m′, where
m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 470

The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), we have

ap−1(p− 1)! ≡ (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p � |(p− 1)!.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 471

The Fermat-Euler Theorema

Corollary 58 For all a ∈ Φ(n), aφ(n) = 1 mod n.

• The proof is similar to that of Lemma 57 (p. 470).

• Consider aΦ(n) = { am mod n : m ∈ Φ(n) }.
• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am ≡ am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 472

The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aφ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m ≡ aφ(n)

⎛
⎝ ∏

m∈Φ(n)

m

⎞
⎠ mod n.

• Finally, aφ(n) = 1 mod n because n � | ∏m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 473

An Example

• As 12 = 22 × 3,

φ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = { 1, 5, 7, 11 }.
• For example,

54 = 625 = 1 mod 12.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 474

Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z
+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si ≡ sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and m� = 1 mod p, then k | �.
– Otherwise, � = qk + a for 0 < a < k, and

m� = mqk+a ≡ ma ≡ 1 mod p, a contradiction.

Lemma 59 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 475

Exponents and Primitive Roots

• From Fermat’s “little” theorem (p. 470), all exponents

divide p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = { 1, 2, . . . , p− 1 } that have exponent k.

• We already knew that R(k) = 0 for k � |(p− 1).

• So ∑
k | (p−1)

R(k) = p− 1

as every number has an exponent.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 476

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• By Lemma 59 (p. 475) there are at most k residues of

exponent k, i.e., R(k) ≤ k.

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si ≡ sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all the solutions of xk = 1 mod p.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 477

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick s�, where � < k.

• Suppose � �∈ Φ(k) with gcd(�, k) = d > 1.

• Then

(s�)k/d = (sk)�/d = 1 mod p.

• Therefore, s� has exponent at most k/d < k.

• So s� has exponent k only if � ∈ Φ(k).

• We conclude that

R(k) ≤ φ(k).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 478

Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k | (p−1)

R(k) ≤
∑

k | (p−1)

φ(k) = p− 1

by Lemma 56 (p. 464).

• Hence

R(k) =

⎧⎨
⎩

φ(k) when k | (p− 1)

0 otherwise

• In particular, R(p− 1) = φ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 51 (p. 448).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 479

A Few Calculations

• Let p = 13.

• From p. 472 φ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = { 1, 5, 7, 11 },
the primitive roots are

g1, g5, g7, g11,

where g is any primitive root.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 480

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 481

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems, as we will see

immediately.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 482

fsat

• fsat is this function problem:

– Let φ(x1, x2, . . . , xn) be a boolean expression.

– If φ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 483

An Algorithm for fsat Using sat
1: t := ε; {Truth assignment.}
2: if φ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if φ[xi = true] ∈ sat then

5: t := t ∪ { xi = true };
6: φ := φ[xi = true];

7: else

8: t := t ∪ { xi = false };
9: φ := φ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 484

Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than φ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction.b

• Instead, it calls sat multiple times as a subroutine, and

its answers guide the search on the computation tree.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.
bRecall p. 247 and p. 251.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 485

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

• Thus the shortest total distance is less than 2|x | in
magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 486

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2|x |] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to its old value; {Edge [i, j] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 487

Analysis

• An edge which is not on any remaining optimal tours

will be eliminated, with its dij set to C + 1.

• So the algorithm ends with n edges which are not

eliminated (why?).

• This is true even if there are multiple optimal tours!a

aThanks to a lively class discussion on November 12, 2013.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 488

Analysis (concluded)

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(|x |).
• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 489

Randomized Computation

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 490

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 491

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithms for maximal independent set.b

aRabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 492

Randomized Algorithms (concluded)

• Are randomized algorithms algorithms?a

• Coin flips are occasionally used in politics.b

aPascal, “Truth is so delicate that one has only to depart the least

bit from it to fall into error.”
bIn the 2016 Iowa Democratic caucuses, e.g. (see

http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin

-flip-iowa-bernie-sanders/index.html).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 493

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 494

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un }.
– V = { v1, v2, . . . , vn }.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of { 1, 2, . . . , n } such that

(ui, vπ(i)) ∈ E

for all i ∈ { 1, 2, . . . , n }.
• A perfect matching contains n edges.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 495

A Perfect Matching in a Bipartite Graph

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 496

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise:

AG
ij =

⎧⎨
⎩

xij , if (ui, vj) ∈ E,

0, othersie.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 497

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 496 isa

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

aThe idea is similar to the Tanner graph in coding theory by Tanner

(1981).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 498

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (7)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.a

• det(AG) contains n! terms, many of which may be 0s.

aEquivalently, sgn(π) = 1 if the number of (i, j)s such that i < j and

π(i) > π(j) is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on

May 1, 2008.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 499

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– Nonzero summands
∏n

i=1A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 60 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 500

Perfect Matching and Determinant (p. 496)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 501

Perfect Matching and Determinant (concluded)

• The matrix is (p. 498)

AG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching, and vice

versa.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 502

How To Test If a Polynomial Is Identically Zero?

• det(AG) is a polynomial in n2 variables.

• It has, potentially, exponentially many terms.

• Expanding the determinant polynomial is thus infeasible.

• If det(AG) ≡ 0, then it remains zero if we substitute

arbitrary integers for the variables x11, . . . , xnn.

• When det(AG) �≡ 0, what is the likelihood of obtaining a

zero?

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 503

Number of Roots of a Polynomial

Lemma 61 (Schwartz (1980)) Let p(x1, x2, . . . , xm) �≡ 0

be a polynomial in m variables each of degree at most d. Let

M ∈ Z
+. Then the number of m-tuples

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

such that p(x1, x2, . . . , xm) = 0 is

≤ mdMm−1.

• By induction on m (consult the textbook).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 504

Density Attack

• The density of roots in the domain is at most

mdMm−1

Mm
=

md

M
. (8)

• So suppose p(x1, x2, . . . , xm) �≡ 0.

• Then a random

(x1, x2, . . . , xm) ∈ { 0, 1, . . . ,M − 1 }m

has a probability of ≤ md/M of being a root of p.

• Note that M is under our control!

– One can raise M to lower the error probability, e.g.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 505

Density Attack (concluded)

Here is a sampling algorithm to test if p(x1, x2, . . . , xm) �≡ 0.

1: Choose i1, . . . , im from { 0, 1, . . . ,M − 1 } randomly;

2: if p(i1, i2, . . . , im) �= 0 then

3: return “p is not identically zero”;

4: else

5: return “p is (probably) identically zero”;

6: end if

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 506

Analysis

• If p(x1, x2, . . . , xm) ≡ 0 , the algorithm will always be

correct as p(i1, i2, . . . , im) = 0.

• Suppose p(x1, x2, . . . , xm) �≡ 0.

– The algorithm will answer incorrectly with

probability at most md/M by Eq. (8) on p. 505.

• We next return to the original problem of bipartite

perfect matching.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 507

A Randomized Bipartite Perfect Matching Algorithma

1: Choose n2 integers i11, . . . , inn from { 0, 1, . . . , 2n2 − 1 }
randomly; {So M = 2n2.}

2: Calculate det(AG(i11, . . . , inn)) by Gaussian elimination;

3: if det(AG(i11, . . . , inn)) �= 0 then

4: return “G has a perfect matching”;

5: else

6: return “G has (probably) no perfect matchings”;

7: end if

aLovász (1979). According to Paul Erdős, Lovász wrote his first sig-

nificant paper “at the ripe old age of 17.”

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 508

Analysis

• If G has no perfect matchings, the algorithm will always

be correct as det(AG(i11, . . . , inn)) = 0.

• Suppose G has a perfect matching.

– The algorithm will answer incorrectly with

probability at most md/M = 0.5 with m = n2, d = 1

and M = 2n2 in Eq. (8) on p. 505.

• Run the algorithm independently k times.

• Output “G has no perfect matchings” if and only if all

say “(probably) no perfect matchings.”

• The error probability is now reduced to at most 2−k.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 509

Lószló Lovász (1948–)

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 510

Remarksa

• Note that we are calculating

prob[algorithm answers “no” |G has no perfect matchings],

prob[algorithm answers “yes” |G has a perfect matching].

• We are not calculatingb

prob[G has no perfect matchings | algorithm answers “no”],

prob[G has a perfect matching | algorithm answers “yes”].

aThanks to a lively class discussion on May 1, 2008.
bNumerical Recipes in C (1988), “statistics is not a branch of math-

ematics!”

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 511

But How Large Can det(AG(i11, . . . , inn)) Be?

• It is at most

n!
(
2n2

)n
.

• Stirling’s formula says n! ∼ √
2πn (n/e)n.

• Hence

log2 det(A
G(i11, . . . , inn)) = O(n log2 n)

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all

intermediate results are of polynomial size.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 512

An Intriguing Questiona

• Is there an (i11, . . . , inn) that will always give correct

answers for the algorithm on p. 508?

• A theorem on p. 604 shows that such an (i11, . . . , inn)

exists!

– Whether it can be found efficiently is another matter.

• Once (i11, . . . , inn) is available, the algorithm can be

made deterministic.

aThanks to a lively class discussion on November 24, 2004.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 513

Randomization vs. Nondeterminisma

• What are the differences between randomized algorithms

and nondeterministic algorithms?

• One can think of a randomized algorithm as a

nondeterministic algorithm but with a probability

associated with every guess/branch.

• So each computation path of a randomized algorithm

has a probability associated with it.

aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Al-

hasan (D01922034) on November 27, 2012.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 514

Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is

called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is

always correct (no false positives; no type 1

errors).

– If the algorithm answers in the negative, then it may

make an error (false negatives; type 2 errors).

aMetropolis and Ulam (1949).

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 515

Monte Carlo Algorithms (continued)

• The algorithm makes a false negative with probability

≤ 0.5.a

• Again, this probability refers tob

prob[algorithm answers “no” |G has a perfect matching]

not

prob[G has a perfect matching | algorithm answers “no”].

aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[algorithm answers “no” | input is a yes instance].

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 516

Monte Carlo Algorithms (concluded)

• This probability 0.5 is not over the space of all graphs or

determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.

• In contrast, to calculate

prob[G has a perfect matching | algorithm answers “no”],

we will need the distribution of G.

• But it is an empirical statement that is very hard to

verify.

c©2016 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 517

