Basic Modular Arithmetics $^{\rm a}$

- Let $m, n \in \mathbb{Z}^+$.
- $m \mid n$ means m divides n; m is n's **divisor**.
- We call the numbers $0, 1, \ldots, n-1$ the **residue** modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 51 (p. 448) is a primitive root of p.

^aCarl Friedrich Gauss.

Basic Modular Arithmetics (concluded)

• We use

 $a \equiv b \mod n$

- if $n \mid (a b)$. - So $25 \equiv 38 \mod 13$.
- We use

 $a = b \mod n$

if b is the remainder of a divided by n.

- So $25 = 12 \mod 13$.

Euler's $^{\rm a}$ Totient or Phi Function

• Let

$$\Phi(n) = \{ m : 1 \le m < n, \gcd(m, n) = 1 \}$$

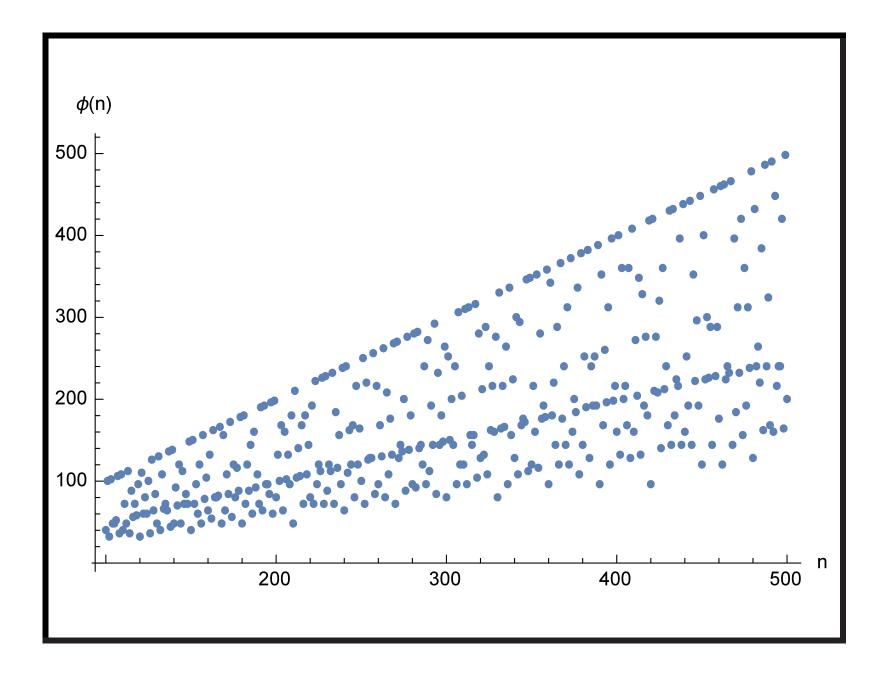
be the set of all positive integers less than n that are prime to n.^b

 $- \Phi(12) = \{ 1, 5, 7, 11 \}.$

- Define **Euler's function** of *n* to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing *n*'s factorization.

^aLeonhard Euler (1707–1783).

 $^{{}^{\}mathrm{b}}Z_n^*$ is an alternative notation.



Leonhard Euler (1707–1783)

Three Properties of Euler's Function

The inclusion-exclusion principle^a can be used to prove the following.

Lemma 54 $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

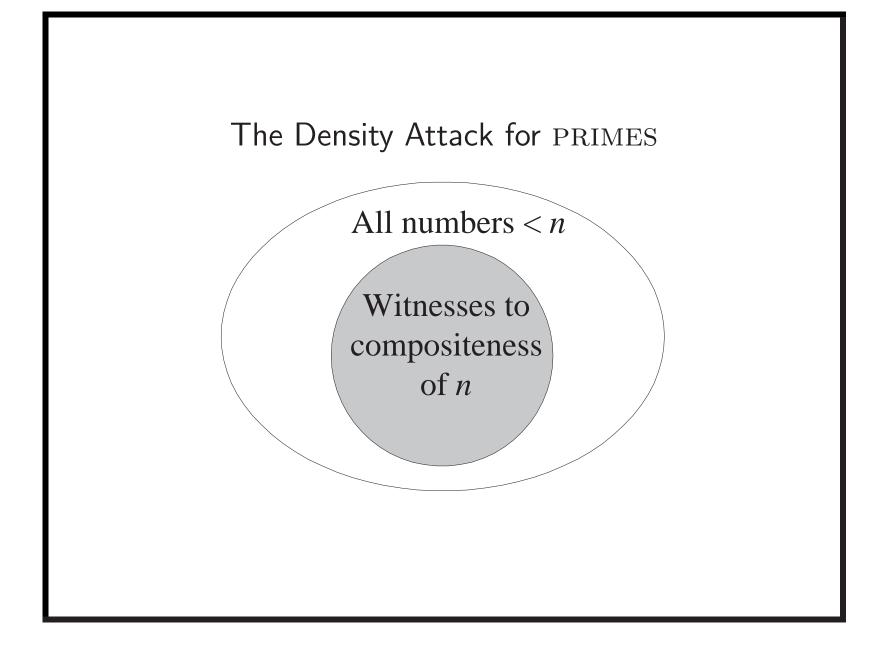
• If $n = p_1^{e_1} p_2^{e_2} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right).$$

Corollary 55 $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1.

Lemma 56 $\sum_{m|n} \phi(m) = n$.

^aConsult any textbooks on discrete mathematics.



The Density Attack for $\ensuremath{\operatorname{PRIMES}}$

- 1: Pick $k \in \{1, \ldots, n\}$ randomly;
- 2: if $k \mid n$ and $k \neq 1$ and $k \neq n$ then
- 3: **return** "*n* is composite";
- 4: else
- 5: **return** "n is (probably) a prime";
- 6: **end if**

The Density Attack for **PRIMES** (continued)

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white ring) is

$$\frac{\phi(n)}{n}$$

• When n = pq, where p and q are distinct primes,

$$\frac{\phi(n)}{n} = \frac{pq - p - q + 1}{pq} > 1 - \frac{1}{q} - \frac{1}{p}.$$

The Density Attack for **PRIMES** (concluded)

- So the ratio of numbers $\leq n$ not relatively prime to n (the gray area) is < (1/q) + (1/p).
 - The "density attack" has probability about $2/\sqrt{n}$ of factoring n = pq when $p \sim q = O(\sqrt{n})$.
 - The "density attack" to factor n = pq hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q = O(\sqrt{n})$.

- This running time is exponential: $\Omega(2^{0.5 \log_2 n})$.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

 $x = a_1 \mod n_1,$ $x = a_2 \mod n_2,$ \vdots $x = a_k \mod n_k,$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem^a

Lemma 57 For all 0 < a < p, $a^{p-1} = 1 \mod p$.

- Recall $\Phi(p) = \{1, 2, \dots, p-1\}.$
- Consider $a\Phi(p) = \{ am \mod p : m \in \Phi(p) \}.$

•
$$a\Phi(p) = \Phi(p).$$

 $-a\Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and p-1.

- Suppose $am \equiv am' \mod p$ for m > m', where $m, m' \in \Phi(p)$.
- That means $a(m m') = 0 \mod p$, and p divides a or m m', which is impossible.

^aPierre de Fermat (1601-1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield (p-1)!.
- Multiply all the numbers in $a\Phi(p)$ to yield $a^{p-1}(p-1)!$.

• As
$$a\Phi(p) = \Phi(p)$$
, we have

$$a^{p-1}(p-1)! \equiv (p-1)! \mod p.$$

• Finally, $a^{p-1} = 1 \mod p$ because $p \not| (p-1)!$.

The Fermat-Euler Theorem^a

Corollary 58 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 57 (p. 470).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am \equiv am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m m') = 0 \mod n$, and n divides a or m m', which is impossible.

 $^{\mathrm{a}}\mathrm{Proof}$ by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded) a

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\phi(n)}\prod_{m\in\Phi(n)}m.$

• As
$$a\Phi(n) = \Phi(n)$$
,

$$\prod_{m \in \Phi(n)} m \equiv a^{\phi(n)} \left(\prod_{m \in \Phi(n)} m\right) \mod n.$$

• Finally, $a^{\phi(n)} = 1 \mod n$ because $n \not\mid \prod_{m \in \Phi(n)} m$.

^aSome typographical errors corrected by Mr. Jung-Ying Chen (D95723006) on November 18, 2008.

An Example

As
$$12 = 2^2 \times 3$$
,
 $\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right)$

• In fact,
$$\Phi(12) = \{1, 5, 7, 11\}.$$

• For example,

$$5^4 = 625 = 1 \mod 12.$$

= 4.

Exponents

• The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that

$$m^k = 1 \bmod p.$$

• Every residue $s \in \Phi(p)$ has an exponent.

 $-1, s, s^2, s^3, \ldots$ eventually repeats itself modulo p, say $s^i \equiv s^j \mod p$, which means $s^{j-i} = 1 \mod p$.

- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k \mid \ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} \equiv m^a \equiv 1 \mod p$, a contradiction.

Lemma 59 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem (p. 470), all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p) = \{1, 2, \dots, p-1\}$ that have exponent k.
- We already knew that R(k) = 0 for $k \not| (p-1)$.
- So

$$\sum_{k \mid (p-1)} R(k) = p - 1$$

as every number has an exponent.

Size of R(k)

• Any $a \in \Phi(p)$ of exponent k satisfies

$$x^k = 1 \bmod p.$$

- By Lemma 59 (p. 475) there are at most k residues of exponent k, i.e., R(k) ≤ k.
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are distinct modulo p.
 - Otherwise, $s^i \equiv s^j \mod p$ with i < j.
 - Then $s^{j-i} = 1 \mod p$ with j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they comprise all the solutions of $x^k = 1 \mod p$.

Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Pick s^{ℓ} , where $\ell < k$.
- Suppose $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d < k.
- So s^{ℓ} has exponent k only if $\ell \in \Phi(k)$.
- We conclude that

$$R(k) \le \phi(k).$$

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p - 1$$

by Lemma 56 (p. 464).

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k \mid (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 51 (p. 448).

A Few Calculations

- Let p = 13.
- From p. 472 $\phi(p-1) = 4$.
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As

$$\Phi(p-1) = \{1, 5, 7, 11\},\$$

the primitive roots are

$$g^1, g^5, g^7, g^{11},$$

where g is any primitive root.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP(D) is in P.
- But decision problems can be as hard as the corresponding function problems, as we will see immediately.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FSAT Using SAT 1: $t := \epsilon$; {Truth assignment.} 2: if $\phi \in SAT$ then for i = 1, 2, ..., n do 3: 4: **if** $\phi[x_i = \text{true}] \in \text{SAT}$ **then** 5: $t := t \cup \{x_i = \text{true}\};$ 6: $\phi := \phi[x_i = true];$ 7: else 8: $t := t \cup \{ x_i = \texttt{false} \};$ $\phi := \phi[x_i = \texttt{false}];$ 9: end if 10: end for 11: 12:return t; 13: **else** 14: return "no"; 15: end if

Analysis

- If SAT can be solved in polynomial time, so can FSAT.
 - There are $\leq n + 1$ calls to the algorithm for SAT.^a
 - Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction.^b
- Instead, it calls SAT multiple times as a subroutine, and its answers guide the search on the computation tree.

 $^{^{\}rm a}{\rm Contributed}$ by Ms. Eva Ou (R93922132) on November 24, 2004. $^{\rm b}{\rm Recall}$ p. 247 and p. 251.

$_{\rm TSP}$ and $_{\rm TSP}$ (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
- Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- Perform a binary search over interval [0, 2^{|x|}] by calling TSP (D) to obtain the shortest distance, C;
- 2: for i, j = 1, 2, ..., n do

3: Call TSP (D) with
$$B = C$$
 and $d_{ij} = C + 1$;

- 4: **if** "no" **then**
- 5: Restore d_{ij} to its old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge which is not on *any* remaining optimal tours will be eliminated, with its d_{ij} set to C + 1.
- So the algorithm ends with *n* edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours!^a

^aThanks to a lively class discussion on November 12, 2013.

Analysis (concluded)

- There are $O(|x| + n^2)$ calls to the algorithm for TSP (D).
- Each call has an input length of O(|x|).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

$Randomized \ Computation$

I know that half my advertising works, I just don't know which half. — John Wanamaker

> I know that half my advertising is a waste of money, I just don't know which half! — McGraw-Hill ad.

Randomized Algorithms $^{\rm a}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is *necessary*.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithms for maximal independent set.^b

^aRabin (1976); Solovay and Strassen (1977).

^b "Maximal" (a local maximum) not "maximum" (a global maximum).

Randomized Algorithms (concluded)

- Are randomized algorithms algorithms?^a
- Coin flips are occasionally used in politics.^b

^aPascal, "Truth is so delicate that one has only to depart the least bit from it to fall into error."

^bIn the 2016 Iowa Democratic caucuses, e.g. (see http://edition.cnn.com/2016/02/02/politics/hillary-clinton-coin -flip-iowa-bernie-sanders/index.html).

"Four Most Important Randomized Algorithms" $^{\rm a}$

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).
^bRabin (1976); Solovay and Strassen (1977).
^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
^dSchwartz (1980); Zippel (1979).
^eSinclair and Jerrum (1989).

Bipartite Perfect Matching

• We are given a **bipartite graph** G = (U, V, E).

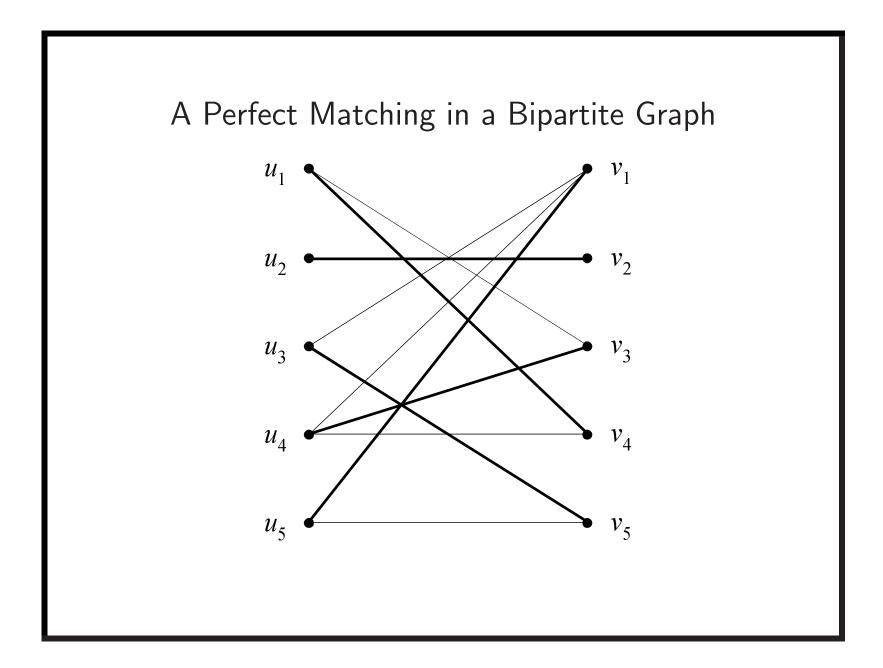
$$- U = \{ u_1, u_2, \dots, u_n \}. - V = \{ v_1, v_2, \dots, v_n \}. - E \subseteq U \times V.$$

We are asked if there is a perfect matching.
A permutation π of {1, 2, ..., n} such that

 $(u_i, v_{\pi(i)}) \in E$

for all $i \in \{1, 2, ..., n\}$.

• A perfect matching contains n edges.



Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^G whose (i, j)th entry A_{ij}^G is a symbolic variable x_{ij} if $(u_i, v_j) \in E$ and 0 otherwise:

$$A_{ij}^G = \begin{cases} x_{ij}, & \text{if } (u_i, v_j) \in E, \\ 0, & \text{othersie.} \end{cases}$$

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 496 is^a

$$A^{G} = \begin{bmatrix} 0 & 0 & x_{13} & x_{14} & 0 \\ 0 & x_{22} & 0 & 0 & 0 \\ x_{31} & 0 & 0 & 0 & x_{35} \\ x_{41} & 0 & x_{43} & x_{44} & 0 \\ x_{51} & 0 & 0 & 0 & x_{55} \end{bmatrix}.$$
 (6)

^aThe idea is similar to the Tanner graph in coding theory by Tanner (1981).

Symbolic Determinants (concluded)

• The **determinant** of A^G is

$$\det(A^G) = \sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^n A^G_{i,\pi(i)}.$$
 (7)

- π ranges over all permutations of n elements.

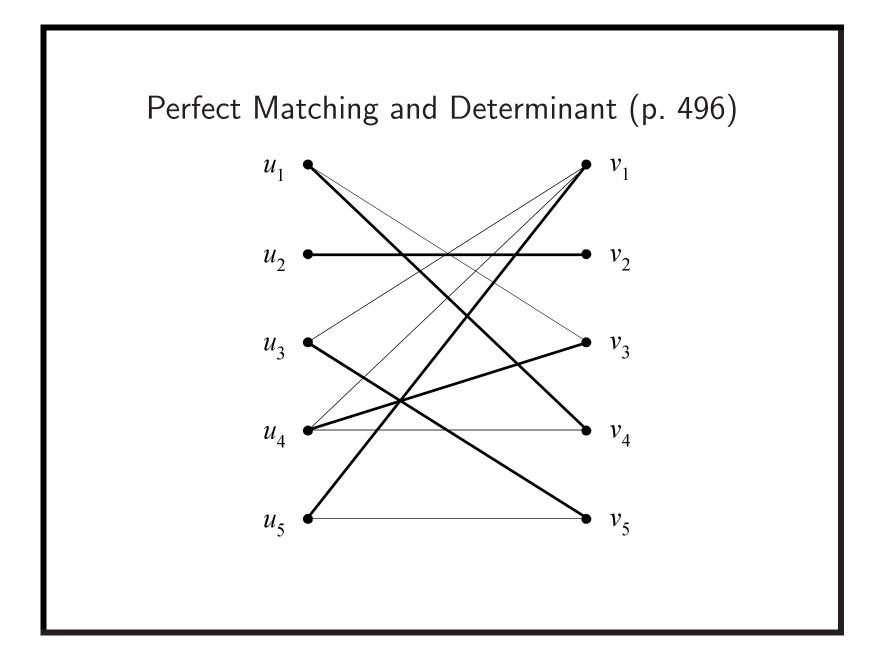
- $-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.^a
- $det(A^G)$ contains n! terms, many of which may be 0s.

^aEquivalently, $sgn(\pi) = 1$ if the number of (i, j)s such that i < j and $\pi(i) > \pi(j)$ is even. Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

Determinant and Bipartite Perfect Matching

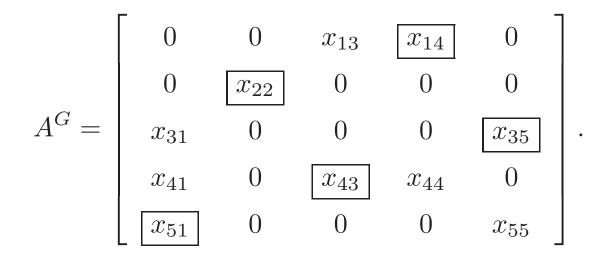
- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i,\pi(i)}^{G}$, note the following:
 - Each summand corresponds to a possible perfect matching π .
 - Nonzero summands $\prod_{i=1}^{n} A_{i,\pi(i)}^{G}$ are distinct monomials and *will not cancel*.
- $det(A^G)$ is essentially an exhaustive enumeration.

Proposition 60 (Edmonds (1967)) G has a perfect matching if and only if $det(A^G)$ is not identically zero.



Perfect Matching and Determinant (concluded)

• The matrix is (p. 498)



- $\det(A^G) = -x_{14}x_{22}x_{35}x_{43}x_{51} + x_{13}x_{22}x_{35}x_{44}x_{51} + x_{14}x_{22}x_{31}x_{43}x_{55} x_{13}x_{22}x_{31}x_{44}x_{55}.$
- Each nonzero term denotes a perfect matching, and vice versa.

How To Test If a Polynomial Is Identically Zero?

- $det(A^G)$ is a polynomial in n^2 variables.
- It has, potentially, exponentially many terms.
- Expanding the determinant polynomial is thus infeasible.
- If $det(A^G) \equiv 0$, then it remains zero if we substitute *arbitrary* integers for the variables x_{11}, \ldots, x_{nn} .
- When $det(A^G) \neq 0$, what is the likelihood of obtaining a zero?

Number of Roots of a Polynomial

Lemma 61 (Schwartz (1980)) Let $p(x_1, x_2, ..., x_m) \neq 0$ be a polynomial in m variables each of degree at most d. Let $M \in \mathbb{Z}^+$. Then the number of m-tuples

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

such that $p(x_1, x_2, ..., x_m) = 0$ is

$$\leq m d M^{m-1}.$$

• By induction on m (consult the textbook).

Density Attack

• The density of roots in the domain is at most

$$\frac{mdM^{m-1}}{M^m} = \frac{md}{M}.$$
(8)

- So suppose $p(x_1, x_2, \ldots, x_m) \neq 0$.
- Then a random

$$(x_1, x_2, \dots, x_m) \in \{0, 1, \dots, M-1\}^m$$

has a probability of $\leq md/M$ of being a root of p.

• Note that M is under our control!

- One can raise M to lower the error probability, e.g.

Density Attack (concluded)

Here is a sampling algorithm to test if $p(x_1, x_2, \ldots, x_m) \neq 0$.

1: Choose i_1, \ldots, i_m from $\{0, 1, \ldots, M-1\}$ randomly;

2: **if**
$$p(i_1, i_2, ..., i_m) \neq 0$$
 then

- 3: **return** "p is not identically zero";
- 4: **else**
- 5: **return** "p is (probably) identically zero";
- 6: **end if**

Analysis

- If $p(x_1, x_2, \ldots, x_m) \equiv 0$, the algorithm will always be correct as $p(i_1, i_2, \ldots, i_m) = 0$.
- Suppose $p(x_1, x_2, \ldots, x_m) \neq 0$.
 - The algorithm will answer incorrectly with probability at most md/M by Eq. (8) on p. 505.
- We next return to the original problem of bipartite perfect matching.

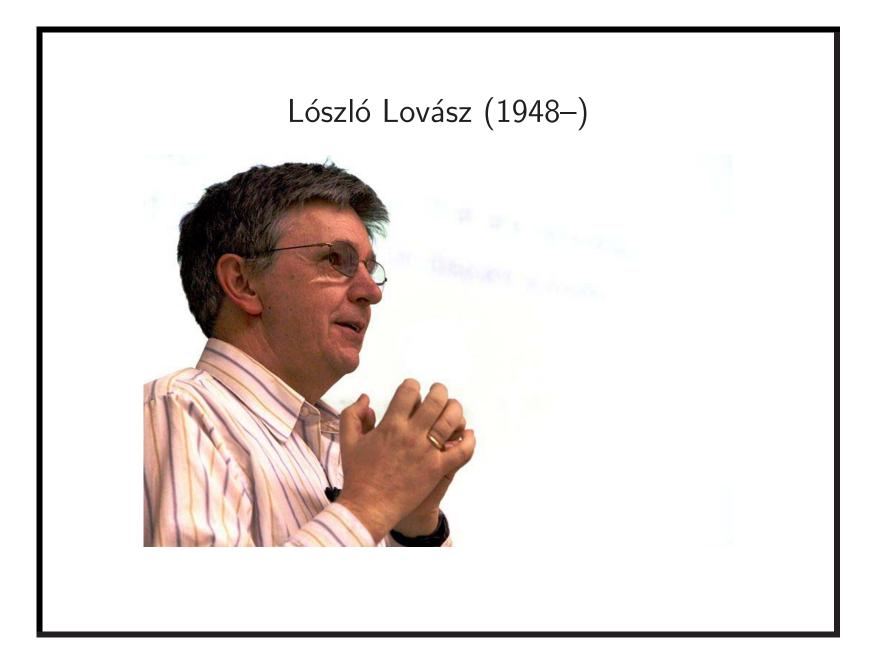
A Randomized Bipartite Perfect Matching Algorithm^a

- 1: Choose n^2 integers $i_{11}, ..., i_{nn}$ from $\{0, 1, ..., 2n^2 1\}$ randomly; $\{\text{So } M = 2n^2.\}$
- 2: Calculate det $(A^G(i_{11},\ldots,i_{nn}))$ by Gaussian elimination;
- 3: **if** $det(A^G(i_{11}, \ldots, i_{nn})) \neq 0$ **then**
- 4: **return** "*G* has a perfect matching";
- 5: **else**
- 6: return "G has (probably) no perfect matchings";
 7: end if

^aLovász (1979). According to Paul Erdős, Lovász wrote his first significant paper "at the ripe old age of 17."

Analysis

- If G has no perfect matchings, the algorithm will always be correct as $det(A^G(i_{11}, \ldots, i_{nn})) = 0.$
- Suppose G has a perfect matching.
 - The algorithm will answer incorrectly with probability at most md/M = 0.5 with $m = n^2$, d = 1and $M = 2n^2$ in Eq. (8) on p. 505.
- Run the algorithm *independently* k times.
- Output "G has no perfect matchings" if and only if all say "(probably) no perfect matchings."
- The error probability is now reduced to at most 2^{-k} .



$\mathsf{Remarks}^{\mathrm{a}}$

• Note that we are calculating

prob[algorithm answers "no" | G has no perfect matchings], prob[algorithm answers "yes" | G has a perfect matching].

• We are *not* calculating^b

prob[G has no perfect matchings | algorithm answers "no"], prob[G has a perfect matching | algorithm answers "yes"].

^aThanks to a lively class discussion on May 1, 2008. ^bNumerical Recipes in C (1988), "statistics is not a branch of mathematics!" But How Large Can det $(A^G(i_{11}, \ldots, i_{nn}))$ Be?

• It is at most

$$n! \left(2n^2\right)^n$$
.

- Stirling's formula says $n! \sim \sqrt{2\pi n} (n/e)^n$.
- Hence

$$\log_2 \det(A^G(i_{11},\ldots,i_{nn})) = O(n\log_2 n)$$

bits are sufficient for representing the determinant.

• We skip the details about how to make sure that all *intermediate* results are of polynomial size.

An Intriguing $\mbox{Question}^{\rm a}$

- Is there an (i_{11}, \ldots, i_{nn}) that will always give correct answers for the algorithm on p. 508?
- A theorem on p. 604 shows that such an (i_{11}, \ldots, i_{nn}) exists!
 - Whether it can be found efficiently is another matter.
- Once (i_{11}, \ldots, i_{nn}) is available, the algorithm can be made deterministic.

^aThanks to a lively class discussion on November 24, 2004.

Randomization vs. Nondeterminism $^{\rm a}$

- What are the differences between randomized algorithms and nondeterministic algorithms?
- One can think of a randomized algorithm as a nondeterministic algorithm but with a probability associated with every guess/branch.
- So each computation path of a randomized algorithm has a probability associated with it.

^aContributed by Mr. Olivier Valery (D01922033) and Mr. Hasan Alhasan (D01922034) on November 27, 2012.

Monte Carlo Algorithms^a

- The randomized bipartite perfect matching algorithm is called a **Monte Carlo algorithm** in the sense that
 - If the algorithm finds that a matching exists, it is always correct (no false positives; no type 1 errors).
 - If the algorithm answers in the negative, then it may make an error (false negatives; type 2 errors).

^aMetropolis and Ulam (1949).

Monte Carlo Algorithms (continued)

- The algorithm makes a false negative with probability $\leq 0.5.^{a}$
- Again, this probability refers to^b

prob[algorithm answers "no" |G has a perfect matching] not

 $\operatorname{prob}[G \text{ has a perfect matching} | \operatorname{algorithm answers "no"}].$

^aEquivalently, among the coin flip sequences, at most half of them lead to the wrong answer.

^bIn general, prob[algorithm answers "no" | input is a yes instance].

Monte Carlo Algorithms (concluded)

- This probability 0.5 is *not* over the space of all graphs or determinants, but *over* the algorithm's own coin flips.
 - It holds for *any* bipartite graph.
- In contrast, to calculate

prob[G has a perfect matching | algorithm answers "no"], we will need the distribution of G.

• But it is an empirical statement that is very hard to verify.