On P vs. NP
If 50 million people believe a foolish thing, it’s still a foolish thing.
— George Bernard Shaw (1856–1950)
Density

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$\text{dens}_L(n) = |\{x \in L : |x| \leq n\}|.$$

- If $L = \{0, 1\}^*$, then $\text{dens}_L(n) = 2^{n+1} - 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

 $$\text{dens}_L(n) \leq n + 1.$$

 - Because $L \subseteq \{\epsilon, 0, 00, \ldots, 00\ldots0, \ldots\}$.

* Berman and Hartmanis (1977).
Sparsity

- **Sparse languages** are languages with polynomially bounded density functions.

- **Dense languages** are languages with superpolynomial density functions.
Self-Reducibility for SAT

- An algorithm exhibits **self-reducibility** if it finds a certificate by exploiting algorithms for the decision version of the same problem.

- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n.

- $t \in \{0, 1\}^j$ is a **partial** truth assignment for x_1, x_2, \ldots, x_j.

- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ.
An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

1: if $|t| = n$ then
2: \hspace{1em} return $\phi[t]$;
3: else
4: \hspace{1em} return $\phi[t0] \lor \phi[t1]$;
5: end if

The above algorithm runs in exponential time, by visiting all the partial assignments (or nodes on a depth-n binary tree).\(^a\)

\(^a\)The same idea was used in the proof of Proposition 72 on p. 606.
Theorem 80 If a unary language $U \subseteq \{0\}^*$ is
NP-complete, then $P = NP$.

- Suppose there is a reduction R from SAT to U.
- We use R to find a truth assignment that satisfies
 boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time
 exhaustive search on p. 750.
- The trick is to keep the already discovered results $\phi[t]$
 in a table H.

\footnote{Berman (1978).}
if $|t| = n$ then
return $\phi[t]$;
else
if $(R(\phi[t]), v)$ is in table H then
return v;
else
if $\phi[t0]$ = “satisfiable” or $\phi[t1]$ = “satisfiable” then
Insert $(R(\phi[t]), “satisfiable”) into H;
return “satisfiable”;
else
Insert $(R(\phi[t]), “unsatisfiable”) into H;
return “unsatisfiable”;
end if
end if
end if
The Proof (continued)

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many $p(n)$ values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
The Proof (continued)

- A search of the table takes time $O(p(n))$ in the random-access memory model.
- The running time is $O(Mp(n))$, where M is the total number of invocations of the algorithm.
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.
- The invocations of the algorithm form a binary tree of depth at most n.
The Proof (continued)

- There is a set $T = \{t_1, t_2, \ldots\}$ of invocations (partial truth assignments, i.e.) such that:
 1. $|T| \geq (M - 1)/(2n)$.
 2. All invocations in T are recursive (nonleaves).
 3. None of the elements of T is a prefix of another.
3rd step: Delete all \(t \)'s at most \(n \) ancestors (prefixes) from further consideration

2nd step: Select any bottom undeleted invocation \(t \) and add it to \(T \)

1st step: Delete leaves; \((M - 1)/2 \) nonleaves remaining
An Example

\[T = \{ h, j \}; \text{none of } h \text{ and } j \text{ is a prefix of the other.} \]
The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked later would have looked it up, and therefore would not be recursive, a contradiction.

- The existence of T implies that there are at least $(M - 1)/(2n)$ different $R(\phi[t])$ values in the table.
The Proof (concluded)

- We already know that there are at most \(p(n) \) such values.
- Hence \((M - 1)/(2n) \leq p(n) \).
- Thus \(M \leq 2np(n) + 1 \).
- The running time is therefore \(O(Mp(n)) = O(np^2(n)) \).
- We comment that this theorem holds for any sparse language, not just unary ones.\(^a\)

\(^a\)Mahaney (1980).
coNP-Completeness and Density

Theorem 81 (Fortung (1979)) *If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then $P = NP$.*

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.
The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.

- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 314).

- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.

- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.
CLIQUE\textsubscript{\(n,k\)}

- CLIQUE\textsubscript{\(n,k\)} is the boolean function deciding whether a graph \(G = (V, E)\) with \(n\) nodes has a clique of size \(k\).
- The input gates are the \(\binom{n}{2}\) entries of the adjacency matrix of \(G\).
 - Gate \(g_{ij}\) is set to true if the associated undirected edge \(\{i, j\}\) exists.
- CLIQUE\textsubscript{\(n,k\)} is a monotone function.
- Thus it can be computed by a monotone circuit.
- This does not rule out that nonmonotone circuits for CLIQUE\textsubscript{\(n,k\)} may use fewer gates, however.
Crude Circuits

- One possible circuit for $\text{CLIQUE}_{n,k}$ does the following.
 1. For each $S \subseteq V$ with $|S| = k$, there is a circuit with $O(k^2)$ \land-gates testing whether S forms a clique.
 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.

- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or $n - k$ is a constant.

- A crude circuit $\text{CC}(X_1, X_2, \ldots, X_m)$ tests if any of $X_i \subseteq V$ forms a clique.
 - The above-mentioned circuit is $\text{CC}(S_1, S_2, \ldots, S_{\binom{n}{k}})$.
The Proof: Positive Examples

- Analysis will be applied to only positive examples and negative examples as inputs.

- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.

- There are $\binom{n}{k}$ such graphs.

- They all should elicit a true output from CLIQUE$_{n,k}$.
The Proof: Negative Examples

- Color the nodes with $k - 1$ different colors and join by an edge any two nodes that are colored differently.
- There are $(k - 1)^n$ such graphs.
- They all should elicit a false output from $\text{CLIQUE}_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.
Positive and Negative Examples with $k = 5$

A positive example

A negative example
Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.

- A **sunflower** is a family of p sets $\{P_1, P_2, \ldots, P_p\}$, called **petals**, each of cardinality at most ℓ.

- Furthermore, all pairs of sets in the family must have the same intersection (called the **core** of the sunflower).
A Sample Sunflower

\{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\},
\{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}.
The Erdős-Rado Lemma

Lemma 82 Let \(\mathcal{Z} \) be a family of more than \(M = (p - 1)^{\ell}\ell! \) nonempty sets, each of cardinality \(\ell \) or less. Then \(\mathcal{Z} \) must contain a sunflower (with \(p \) petals).

- Induction on \(\ell \).

- For \(\ell = 1 \), \(p \) different singletons form a sunflower (with an empty core).

- Suppose \(\ell > 1 \).

- Consider a maximal subset \(\mathcal{D} \subseteq \mathcal{Z} \) of disjoint sets.
 - Every set in \(\mathcal{Z} - \mathcal{D} \) intersects some set in \(\mathcal{D} \).
The Proof of the Erdős-Rado Lemma (continued)

For example,

\[Z = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\}, \]

\[D = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}. \]
The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - \mathcal{D} constitutes a sunflower with an empty core.

- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D}.
 - $|C| < (p - 1)^\ell$.
 - C intersects every set in \mathcal{Z} by \mathcal{D}'s maximality.
 - There is a $d \in C$ that intersects more than
 \[\frac{M}{(p-1)^\ell} = (p - 1)^{\ell-1}(\ell - 1)! \]
 sets in \mathcal{Z}.
 - Consider $\mathcal{Z}' = \{Z - \{d\} : Z \in \mathcal{Z}, d \in Z\}$.
The Proof of the Erdős-Rado Lemma (concluded)

• (continued)

 – \(\mathcal{Z}' \) has more than \(M' = (p - 1)^{\ell - 1}(\ell - 1)! \) sets.

 – \(M' \) is just \(M \) with \(\ell \) replaced with \(\ell - 1 \).

 – \(\mathcal{Z}' \) contains a sunflower by induction, say

 \[\{P_1, P_2, \ldots, P_p\}. \]

 – Now,

 \[\{P_1 \cup \{d\}, P_2 \cup \{d\}, \ldots, P_p \cup \{d\}\} \]

 is a sunflower in \(\mathcal{Z} \).
Paul Erdős (1913–1996)
Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If \mathcal{Z} is a family of sets, the above result is denoted by $\text{pluck}(\mathcal{Z})$.
- Note: $\text{pluck}(\mathcal{Z})$ is not unique.
An Example of Plucking

- Recall the sunflower on p. 768:

\[Z = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\} \]

- Then

\[\text{pluck}(Z) = \{\{1, 2\}\}. \]
Razborov’s Theorem

Theorem 83 (Razborov (1985)) There is a constant c such that for large enough n, all monotone circuits for $\text{CLIQUE}_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $\text{CLIQUE}_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the final crude circuit has exponentially many errors.
The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that

 \[2 \binom{\ell}{2} \leq k - 1.\]

- p will be fixed later to be $n^{1/8} \log n$.
- Fix $M = (p - 1)^{\ell} \ell!$.
 - Recall the Erdős-Rado lemma (p. 769).

\(^a\)Corrected by Mr. Moustapha Bande (D98922042) on January 05, 2010.
The Proof (continued)

- Each crude circuit used in the approximation process is of the form \(\text{CC}(X_1, X_2, \ldots, X_m)\), where:
 - \(X_i \subseteq V\).
 - \(|X_i| \leq \ell\).
 - \(m \leq M\).
- It answers true if any \(X_i\) is a clique.
- We shall show how to approximate any circuit for \(\text{CLIQUE}_{n,k}\) by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate \(g_{ij}\) is the crude circuit \(\text{CC}(\{i, j\})\).
The Proof (continued)

• Any monotone circuit can be considered the OR or AND of two subcircuits.

• We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 – We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 – \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 – We construct the approximate OR and the approximate AND of these subcircuits.
 – Then show both approximations introduce few errors.
The Proof: OR

- $\text{CC}(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$.
 - A set of nodes $\mathcal{C} \in \mathcal{X} \cup \mathcal{Y}$ is a clique if and only if $\mathcal{C} \in \mathcal{X}$ is a clique or $\mathcal{C} \in \mathcal{Y}$ is a clique.

- Violations in using $\text{CC}(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.

- Such violations can be eliminated by using

 $$\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

 as the approximate OR of $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$.
The Proof: OR

- If CC(\(Z\)) is true, then CC(pluck(\(Z\))) must be true.
 - The quick reason: If \(Y\) is a clique, then a subset of \(Y\) must also be a clique.
 - For each \(Y \in \mathcal{X} \cup \mathcal{Y}\), there must exist at least one \(X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})\) such that \(X \subseteq Y\).
 - If \(Y\) is a clique, then this \(X\) is also a clique.

- We now bound the number of errors this approximate OR makes on the positive and negative examples.
The Proof: OR (concluded)

- $\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ *introduces* a **false positive** if a negative example makes both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ return false but makes $\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true.

- $\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ *introduces* a **false negative** if a positive example makes either $\text{CC}(\mathcal{X})$ or $\text{CC}(\mathcal{Y})$ return true but makes $\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.

- How many false positives and false negatives are introduced by $\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$?
The Number of False Positives

Lemma 84 \(\text{CC}(\text{pluck}(\mathcal{X} \cup \mathcal{Y})) \) introduces at most
\[
\frac{M}{p-1} 2^{-p}(k - 1)^n \text{ false positives.}
\]

- A plucking replaces the sunflower \(\{Z_1, Z_2, \ldots, Z_p\} \) with its core \(Z \).

- A false positive is necessarily a coloring such that:
 - There is a pair of identically colored nodes in each petal \(Z_i \) (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 * This implies at least one node from each same-color pair was plucked away.

- We now count the number of such colorings.
Proof of Lemma 84 (continued)
Proof of Lemma 84 (continued)

- Color nodes V at random with $k - 1$ colors and let $R(X)$ denote the event that there are repeated colors in set X.
- Now $\text{prob}[R(Z_1) \land \cdots \land R(Z_p) \land \neg R(Z)]$ is at most

\[
\text{prob}[R(Z_1) \land \cdots \land R(Z_p) | \neg R(Z)]
\]

\[= \prod_{i=1}^{p} \text{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \text{prob}[R(Z_i)]. \tag{20}
\]

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 84 (continued)

- Consider two nodes in Z_i.
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now $\Pr[R(Z_i)] \leq \frac{|Z_i|}{k-1} \leq \frac{\ell}{k-1} \leq \frac{1}{2}$.
- So the probability\(^a\) that a random coloring is a new false positive is at most 2^{-p} by inequality (20).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

\(^a\)Proportion, i.e.
Proof of Lemma 84 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$ ends the moment the set system contains $\leq M$ sets.
- Each plucking reduces the number of sets by $p - 1$.
- Hence at most $\frac{M}{p - 1}$ pluckings occur in $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$.
- At most
 \[
 \frac{M}{p - 1} 2^{-p}(k - 1)^n
 \]
 false positives are introduced.a

aNote that the numbers of errors are added not multiplied. Recall that we count how many new errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.
The Number of False Negatives

Lemma 85 $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- A plucking replaces sets in a crude circuit by their (common) subset.
- This makes the test for cliqueness less stringent (p. 781).\(^a\)

\(^a\)Recall that $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return true but makes $CC(\text{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false.
The Number of False Negatives (concluded)
The Proof: AND

- The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

$$CC(\text{pluck}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}))$$.

- We now count the number of errors this approximate AND makes on the positive and negative examples.
The Proof: AND (concluded)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.

- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.

- How many false positives and false negatives are introduced by the approximate AND?
The Number of False Positives

Lemma 86 The approximate AND introduces at most $M^2 2^{-p}(k - 1)^n$ false positives.

- We prove this claim in stages.
- $\text{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ return true.
- $\text{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces no additional false positives because we are testing fewer sets for cliqueness.
Proof of Lemma 86 (concluded)

- \(|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}| \leq M^2|.
- Each plucking reduces the number of sets by \(p - 1\).
- So \(\text{pluck(}\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})\) involves \(\leq M^2/(p - 1)\) pluckings.
- Each plucking introduces at most \(2^{-p}(k - 1)^n\) false positives by the proof of Lemma 84 (p. 783).
- The desired upper bound is

\[
[\frac{M^2}{(p - 1)}] 2^{-p}(k - 1)^n \leq M^2 2^{-p}(k - 1)^n.
\]
The Number of False Negatives

Lemma 87 The approximate AND introduces at most $M^2 \binom{n - \ell - 1}{k - \ell - 1}$ false negatives.

- We again prove this claim in stages.
- $\text{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives.
 - Suppose both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ accept a positive example with a clique of size k.
 - This clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
 - This is why both $\text{CC}(\mathcal{X})$ and $\text{CC}(\mathcal{Y})$ return true.
 - As this clique also contains $X_i \cup Y_j$, the new circuit returns true.
Proof of Lemma 87 (continued)

Clique of size k
Proof of Lemma 87 (continued)

\begin{itemize}
 \item $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 \begin{itemize}
 \item Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.
 \item There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 \begin{itemize}
 \item It is the number of positive examples whose clique contains Z.
 \end{itemize}
 \item $\binom{n-|Z|}{k-|Z|} \leq \binom{n-\ell-1}{k-\ell-1}$ as $|Z| > \ell$.
 \item There are at most M^2 such Zs.
 \end{itemize}
\end{itemize}
Proof of Lemma 87 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(Z)$ is true, then $CC(\text{pluck}(Z))$ must be true (p. 781).
Two Summarizing Lemmas

From Lemmas 84 (p. 783) and 86 (p. 792), we have:

Lemma 88 Each approximation step introduces at most $M^{2}2^{-p}(k - 1)^n$ false positives.

From Lemmas 85 (p. 788) and 87 (p. 794), we have:

Lemma 89 Each approximation step introduces at most $M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
The Proof (continued)

- The above two lemmas show that each approximation step introduces “few” false positives and false negatives.
- We next show that the resulting crude circuit has “a lot” of false positives or false negatives.
The Final Crude Circuit

Lemma 90 Every final crude circuit is:

1. Identically false—thus wrong on all positive examples.
2. Or outputs true on at least half of the negative examples.

• Suppose it is not identically false.
• By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
• The proof of Lemma 84 (p. 783ff) shows that at least half of the colorings assign different colors to nodes in X.
• So half of the negative examples have a clique in X and are accepted.
The Proof (continued)

- Recall the constants on p. 777: \(k = n^{1/4}, \ell = n^{1/8} \),
 \(p = n^{1/8} \log n, M = (p - 1)^\ell \ell! < n^{(1/3) n^{1/8}} \) for large \(n \).

- Suppose the final crude circuit is identically false.

 - By Lemma 89 (p. 798), each approximation step introduces at most
 \(M^2 \left(\frac{n - \ell - 1}{k - \ell - 1} \right) \) false negatives.

 - There are \(\binom{n}{k} \) positive examples.

 - The original monotone circuit for CLIQUE\(_{n,k}\) has at least
 \[
 \frac{\binom{n}{k}}{M^2 \left(\frac{n - \ell - 1}{k - \ell - 1} \right)} \geq \frac{1}{M^2} \left(\frac{n - \ell}{k} \right)^\ell \geq n^{(1/12) n^{1/8}}
 \]
 gates for large \(n \).
The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 90 (p. 800) says that there are at least
 \((k - 1)^n/2\) false positives.
 - By Lemma 88 (p. 798), each approximation step introduces at most \(M^22^{-p}(k - 1)^n\) false positives.
 - The original monotone circuit for \(\text{CLIQUE}_{n,k}\) has at least

\[
\frac{(k - 1)^n/2}{M^22^{-p}(k - 1)^n} = \frac{2^{p-1}}{M^2} \geq n^{(1/3)n^{1/8}}
\]

gates.
Alexander Razborov (1963–)
P ≠ NP Proved?

- Razborov’s theorem says that there is a monotone language in NP that has no polynomial monotone circuits.

- If we can prove that all monotone languages in P have polynomial monotone circuits, then P ≠ NP.

- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!
Finis