Theory of Computation

homework 3 Due: 11/4/2014

Problem 1 Show that $NL \neq PSPACE$.

Ans: By Space Hierarchy Theorem (slide p. 234),

 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)) \subseteq SPACE(f^2(n)).$

By Savitch's Theorem (slide p. 253), for proper function $f(n) \ge \log n$,

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

With $f(n) = \log^2 n$, we obtain

 $SPACE(\log^2 n) \subsetneq SPACE(\log^4 n).$

Hence,

 $NL = NSPACE(\log n) \subseteq SPACE(\log^2 n) \subsetneq SPACE(\log^4 n) \subseteq PSPACE.$

Problem 2 Show that for k > 3, k-SAT is NP-complete.

Ans: Consider a k-SAT expression Φ with *n* variables, *m* clauses and *k* literals in every clause. First, k-SAT \in NP since an NTM can guess a truth assignment for the *n* variables and then check if it satisfies Φ , all in polynomial time. We proceed to prove k-SAT is NP-hard by reducing 3SAT to it. Let Φ' denote an instance of 3SAT and c'_j be a clause of Φ' , where $j = 1, 2, \ldots, m$. We convert Φ' to Φ by adding the new variables $g_1, g_2, \ldots, g_{k-3}$ into each clause as follows. Without loss of generality, set k = 5 in our case. We replace each $c'_j = (x \lor y \lor z)$ by

$$c_j = (c'_j \lor g_1 \lor g_2) \land (c'_j \lor \neg g_1 \lor g_2) \land (c'_j \lor g_1 \lor \neg g_2) \land (c'_j \lor \neg g_1 \lor \neg g_2).$$
(1)

Note that each clause has 5 literals. Clearly, the above replacement is polynomial-time doable. Next we prove the reduction works.

If c'_j is satisfied by a truth assignment, then c_j is satisfied by the same truth assignment with g_1 and g_2 arbitrarily set because g_1 and g_2 do not affect the result. Hence, if Φ' is satisfiable, then Φ is, too.

Suppose c_j is satisfied by a truth assignment. As g_i and $\neg g_i$, where i = 1, 2, have opposite truth values, then c'_j must be satisfied under the same truth assignment as well, otherwise, one of the clauses in Eq. (1) would be false. Therefore, if Φ is satisfiable, Φ' must be satisfiable too.