Undirected Graphs

- An undirected graph $G = (V, E)$ has a finite set of nodes, V, and a set of undirected edges, E.

- It is like a directed graph except that the edges have no directions and there are no self-loops.

- Use $[i, j]$ to denote the fact that there is an edge between node i and node j.
Independent Sets

• Let $G = (V, E)$ be an undirected graph.

• $I \subseteq V$.

• I is independent if there is no edge between any two nodes $i, j \in I$.

• The INDEPENDENT SET problem: Given an undirected graph and a goal K, is there an independent set of size K?

• Many applications.
INDEPENDENT SET Is NP-Complete

- This problem is in NP: Guess a set of nodes and verify that it is independent and meets the count.

- We will reduce 3SAT to INDEPENDENT SET.

- If a graph contains a triangle, any independent set can contain at most one node of the triangle.

- The results of the reduction will be graphs whose nodes can be partitioned into disjoint triangles, one for each clause.
The Proof (continued)

- Let ϕ be an instance of 3SAT with m clauses.
- We will construct graph G with $K = m$.
- Furthermore, ϕ is satisfiable if and only if G has an independent set of size K.
- Here is the reduction:
 - There is a triangle for each clause with the literals as the nodes.
 - Add edges between x and $\neg x$ for every variable x.

©2014 Prof. Yuh-Dauh Lyuu, National Taiwan University
\[(x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3)\]

Same literal labels that appear in different clauses yield distinct nodes.
The Proof (continued)

- Suppose G has an independent set I of size $K = m$.
 - An independent set can contain at most m nodes, one from each triangle.
 - So I contains exactly one node from each triangle.
 - Truth assignment T assigns true to those literals in I.
 - T is consistent because contradictory literals are connected by an edge; hence both cannot be in I.
 - T satisfies ϕ because it has a node from every triangle, thus satisfying every clause.\(^a\)

\(^a\)The variables without a truth value can be assigned arbitrarily. Contributed by Mr. Chun-Yuan Chen (R99922119) on November 2, 2010.
The Proof (concluded)

- Suppose ϕ is a satisfiable.
 - Let truth assignment T satisfy ϕ.
 - Collect one node from each triangle whose literal is true under T.
 - The choice is arbitrary if there is more than one true literal.
 - This set of m nodes must be independent by construction.
 * Both literals x and $\neg x$ cannot be assigned true.
Other INDEPENDENT SET-Related NP-Complete Problems

Corollary 38 INDEPENDENT SET is NP-complete for 4-degree graphs.

Theorem 39 INDEPENDENT SET is NP-complete for planar graphs.

Theorem 40 (Garey and Johnson (1977))
INDEPENDENT SET is NP-complete for 3-degree planar graphs.
NODE COVER

- We are given an undirected graph G and a goal K.
- **NODE COVER:** Is there a set C with K or fewer nodes such that each edge of G has at least one of its endpoints (i.e., incident nodes) in C?
- Many applications.
NODE COVER Is NP-Complete

Corollary 41 (Karp (1972)) NODE COVER is NP-complete.

- I is an independent set of $G = (V, E)$ if and only if $V - I$ is a node cover of G.

![Graph diagram showing node cover and independent set I.]
Remarksa

- Are INDEPENDENT SET and NODE COVER NP-complete if K is a constant?
 - No, because one can do an exhaustive search on all the possible node covers or independent sets (both $\binom{n}{K}$ of them, a polynomial).b

- Are INDEPENDENT SET and NODE COVER NP-complete if K is a linear function of n?
 - INDEPENDENT SET with $K = n/3$ and NODE COVER with $K = 2n/3$ remain NP-complete by our reductions.

aContributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
b$n = |V|$.
CLIQUE

• We are given an undirected graph G and a goal K.

• CLIQUE asks if there is a set C with K nodes such that there is an edge between any two nodes $i, j \in C$.

• Many applications.
Corollary 42 (Karp (1972)) CLIQUE is NP-complete.

- Let \bar{G} be the complement of G, where $[x, y] \in \bar{G}$ if and only if $[x, y] \notin G$.
- I is a clique in G \iff I is an independent set in \bar{G}.
MIN CUT and MAX CUT

• A cut in an undirected graph $G = (V, E)$ is a partition of the nodes into two nonempty sets S and $V - S$.

• The size of a cut $(S, V - S)$ is the number of edges between S and $V - S$.

• MIN CUT $\in P$ by the maxflow algorithm.a

• MAX CUT asks if there is a cut of size at least K.
 $-$ K is part of the input.

aIn time $O(|V| \cdot |E|)$ by Orlin (2012).
A Cut of Size 4
MIN CUT and MAX CUT (concluded)

- MAX CUT has applications in circuit layout.
 - The minimum area of a VLSI layout of a graph is not less than the square of its maximum cut size.\(^a\)

\(^a\)Raspaud, Sýkora, and Vrťo (1995); Mak and Wong (2000).
MAX CUT Is NP-Complete

- We will reduce NAESAT to MAX CUT.
- Given an instance ϕ of 3SAT with m clauses, we shall construct a graph $G = (V, E)$ and a goal K.
- Furthermore, there is a cut of size at least K if and only if ϕ is NAE-satisfiable.
- Our graph will have multiple edges between two nodes.
 - Each such edge contributes one to the cut if its nodes are separated.

aKarp (1972) and Garey, Johnson, and Stockmeyer (1976).
The Proof

- Suppose ϕ’s m clauses are C_1, C_2, \ldots, C_m.
- The boolean variables are x_1, x_2, \ldots, x_n.
- G has $2n$ nodes: $x_1, x_2, \ldots, x_n, \neg x_1, \neg x_2, \ldots, \neg x_n$.
- Each clause with 3 distinct literals makes a triangle in G.
- For each clause with two identical literals, there are two parallel edges between the two distinct literals.
The Proof (continued)

- No need to consider clauses with one literal (why?).
- No need to consider clauses containing two opposite literals x_i and $\neg x_i$ (why?).
- For each variable x_i, add n_i copies of edge $[x_i, \neg x_i]$, where n_i is the number of occurrences of x_i and $\neg x_i$ in ϕ.
- Note that

$$\sum_{i=1}^{n} n_i = 3m$$

as it is simply the total number of literals.
The Proof (continued)

- Set $K = 5m$.
- Suppose there is a cut $(S, V - S)$ of size $5m$ or more.
- A clause (a triangle or two parallel edges) contributes at most 2 to a cut no matter how you split it.
- Suppose both x_i and $\neg x_i$ are on the same side of the cut.
- They together contribute (at most) $2n_i$ edges to the cut.
 - They appear in (at most) n_i different clauses.
 - A clause contributes at most 2 to a cut.
The Proof (continued)

- Either \(x_i \) or \(\neg x_i \) contributes at most \(n_i \) to the cut by the pigeonhole principle.

- Changing the side of that literal does not decrease the size of the cut.

- Hence we assume variables are separated from their negations.

- The total number of edges in the cut that join opposite literals \(x_i \) and \(\neg x_i \) is \(\sum_{i=1}^{n} n_i \).

- But \(\sum_{i=1}^{n} n_i = 3m \).
The Proof (concluded)

- The remaining $K - 3m \geq 2m$ edges in the cut must come from the m triangles or parallel edges that correspond to the clauses.

- Each can contribute at most 2 to the cut.\(^a\)

- So all are split.

- A split clause means at least one of its literals is true and at least one false.

- The other direction is left as an exercise.

\(^a\)So $K = 5m$.
A Cut That Does Not Meet the Goal $K = 5 \times 3 = 15$

- $(x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3)$.
- The cut size is $13 < 15$.
A Cut That Meets the Goal \(K = 5 \times 3 = 15 \)

- \((x_1 \lor x_2 \lor x_2) \land (x_1 \lor \neg x_3 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \).
- The cut size is now 15.
Remarks

- We had proved that \textsc{max cut} is NP-complete for multigraphs.

- How about proving the same thing for simple graphs?\(^a\)

- How to modify the proof to reduce 4\textsc{sat} to \textsc{max cut}?\(^b\)

- All NP-complete problems are mutually reducible by definition.\(^c\)
 - So they are equally hard in this sense.\(^d\)

\(^a\)Contributed by Mr. Tai-Dai Chou (J93922005) on June 2, 2005.
\(^b\)Contributed by Mr. Chien-Lin Chen (J94922015) on June 8, 2006.
\(^c\)Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
\(^d\)Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
MAX BISECTION

- MAX CUT becomes MAX BISECTION if we require that $|S| = |V - S|$.
- It has many applications, especially in VLSI layout.
MAX BISECTION Is NP-Complete

- We shall reduce the more general MAX CUT to MAX BISECTION.
- Add $|V| = n$ isolated nodes to G to yield G''.
- G'' has $2n$ nodes.
- G'''s goal K is identical to G's
 - As the new nodes have no edges, they contribute 0 to the cut.
- This completes the reduction.
The Proof (concluded)

- Every cut \((S, V - S)\) of \(G = (V, E)\) can be made into a bisection by appropriately allocating the new nodes between \(S\) and \(V - S\).

- Hence each cut of \(G\) can be made a cut of \(G'\) of the same size, and vice versa.
BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).

- Unlike MIN CUT, BISECTION WIDTH is NP-complete.

- We reduce MAX BISECTION to BISECTION WIDTH.

- Given a graph $G = (V, E)$, where $|V|$ is even, we generate the complement of G.

- Given a goal of K, we generate a goal of $n^2 - K$.\(^a\)

\(^a\mid V\mid = 2n.$
The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
 - A graph $G = (V, E)$, where $|V| = 2n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^2 - K$.
 - So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^2 - K$.
Theorem 43 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

\(^a\)Karp (1972).
A Hamiltonian Path at IKEA, Covina, California?
TSP (D) Is NP-Complete

Corollary 44 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G' with the same nodes as G.
- Set $d_{ij} = 1$ on G' if $[i, j] \in G$ and $d_{ij} = 2$ on G' if $[i, j] \notin G$.
 - Note that G' is a complete graph.
- Set the budget $B = n + 1$.
- This completes the reduction.
TSP (D) Is NP-Complete (continued)

- Suppose G' has a tour of distance at most $n + 1$.\(^a\)
- Then that tour on G' must contain at most one edge with weight 2.
- If a tour on G' contains 1 edge with weight 2, remove that edge to arrive at a Hamiltonian path for G.
- Suppose, on the other hand, a tour on G' contains no edge with weight 2.
- Then remove any edge to arrive at a Hamiltonian path for G.

\(^{a}\)A tour is a cycle, not a path.
TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has a Hamiltonian path.
- Then there is a tour on G' containing at most one edge with weight 2.
 - Start with a Hamiltonian path and then close the loop.
- The total cost is then at most $(n - 1) + 2 = n + 1 = B$.
- We conclude that there is a tour of length B or less on G' if and only if G has a Hamiltonian path.
Random TSP

- Suppose each distance d_{ij} is picked uniformly and independently from the interval $[0, 1]$.

- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β.

- In fact, the total distance of the shortest tour can be away from the mean by more than t with probability at most $e^{-t^2/(4n)\text{!}}$\(^a\)

\(^a\)Dubhashi and Panconesi (2012).
Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?a

- 2-COLORING is in P (why?).

- But 3-COLORING is NP-complete (see next page).

- k-COLORING is NP-complete for $k \geq 3$ (why?).

- EXACT-k-COLORING asks if the nodes of a graph can be colored using exactly k colors.

- It remains NP-complete for $k \geq 3$ (why?).

ak is not part of the input; k is part of the problem statement.
3-COLORING Is NP-Complete

- We will reduce NAESAT to 3-COLORING.
- We are given a set of clauses C_1, C_2, \ldots, C_m each with 3 literals.
- The boolean variables are x_1, x_2, \ldots, x_n.
- We shall construct a graph G that can be colored with colors $\{0, 1, 2\}$ if and only if all the clauses can be NAE-satisfied.

\[\text{Karp (1972).}\]
The Proof (continued)

- Every variable x_i is involved in a triangle $[a, x_i, \neg x_i]$ with a common node a.

- Each clause $C_i = (c_{i1} \lor c_{i2} \lor c_{i3})$ is also represented by a triangle $[c_{i1}, c_{i2}, c_{i3}]$.
 - Node c_{ij} with the same label as one in some triangle $[a, x_k, \neg x_k]$ represent distinct nodes.

- There is an edge between c_{ij} and the node that represents the jth literal of C_i.\(^{\text{a}}\)

\(^{\text{a}}\)Alternative proof: There is an edge between $\neg c_{ij}$ and the node that represents the jth literal of C_i. Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.
Construction for \[\cdots \land (x_1 \lor \neg x_2 \lor \neg x_3) \land \cdots \]
Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_i and $\neg x_i$ must take the color 0 and the other 1.
The Proof (continued)

- Treat 1 as true and 0 as false.a
 - We are dealing with those triangles with the “a” node, not the clause triangles yet.

- The resulting truth assignment is clearly contradiction free.

- As each clause triangle contains one color 1 and one color 0, the clauses are NAE-satisfied.

aThe opposite also works.
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2.
- Color the nodes representing literals by their truth values (color 0 for \textit{false} and color 1 for \textit{true}).
 - We are dealing with those triangles with the “a” node, not the clause triangles.
The Proof (continued)

- For each clause triangle:
 - Pick any two literals with opposite truth values.
 - Color the corresponding nodes with 0 if the literal is \textit{true} and 1 if it is \textit{false}.
 - Color the remaining node with color 2.
The Proof (concluded)

- The coloring is legitimate.
 - If literal w of a clause triangle has color 2, then its color will never be an issue.
 - If literal w of a clause triangle has color 1, then it must be connected up to literal w with color 0.
 - If literal w of a clause triangle has color 0, then it must be connected up to literal w with color 1.
Algorithms for 3-COLORING and the Chromatic Number $\chi(G)$

- Assume G is 3-colorable.
- There is an algorithm to find a 3-coloring in time $O(3^{n/3}) = 1.4422^n$.\(^a\)
- It has been improved to $O(1.3289^n)$.\(^b\)

\(^a\)Lawler (1976).
\(^b\)Beigel and Eppstein (2000).
Algorithms for 3-COLORING and the Chromatic Number $\chi(G)$ (concluded)

- The **chromatic number** $\chi(G)$ is the smallest number of colors needed to color a graph G.

- There is an algorithm to find $\chi(G)$ in time $O((4/3)^{n/3}) = 2.4422^n$.\(^a\)

- It can be improved to $O((4/3 + 3^{4/3}/4)^n) = O(2.4150^n)$\(^b\) and $2^n n^{O(1)}$.\(^c\)

- Computing $\chi(G)$ cannot be easier than 3-COLORING.\(^d\)

\(^a\) Lawler (1976).

\(^b\) Eppstein (2003).

\(^c\) Koivisto (2006).

\(^d\) Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 45 (Karp (1972)) TRIPARTITE MATCHING is \textit{NP-complete}.
Related Problems

- We are given a family $F = \{S_1, S_2, \ldots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume $|U| = 3m$ for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint (so have U as their union).
Related Problems (concluded)

Corollary 46 (Karp (1972)) SET COVERING, SET PACKING, and EXACT COVER BY 3-SETS are all NP-complete.

- SET COVERING can be used to prove that the influence maximization problem in social networks is NP-complete.\(^a\)

\(^a\)Kempe, Kleinberg, and Tardos (2003).
The KNAPSACK Problem

- There is a set of n items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- We are given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$.
- KNAPSACK asks if there exists a subset
 \[S \subseteq \{1, 2, \ldots, n\} \]
 such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq K$.
- We want to achieve the maximum satisfaction within the budget.