Theory of Computation

Homework 5

Due: 2013/12/24

Problem 1 Prove or disprove the claim that all languages which have polynomial circuit are in PSPACE.

Proof: Polynomial circuits can accept undecidable languages, but PSPACE contains only decidable languages. So the statement is false.

Problem 2 Let X be a random variable with mean μ_X and standard deviation σ_X . Recall that $\sigma_X^2 = \mathbf{E}(X - \mu_X)^2$. Show that for any $t \in \mathbb{R}^+$,

$$\Pr[X - \mu_X \ge t\sigma_X] \le \frac{1}{1 + t^2}.$$

Proof: By Markov's inequality,

$$\mathbf{Pr}[X - \mu_X \ge t\sigma_X] \le \mathbf{Pr}[X - \mu_X \ge (t - 1)\sigma_X]$$

$$= \mathbf{Pr}[(X - \mu_X)^2 \ge (t - 1)^2\sigma_X^2]$$

$$\le \frac{\mathbf{E}(X - \mu_X)^2}{(t - 1)^2\sigma_X^2}$$

$$\le \frac{1}{(t - 1)^2}$$

$$\le \frac{1}{1 + t^2}.$$