Theory of Computation

Homework 4
Due: 2013/12/10
Problem 1. Determine if $x^{4} \equiv 25(\bmod 1013)$ is solvable or not.

Solution.

Let's first notice that 1013 is a prime. Since 25 has square roots ± 5, we need to check if any of the Legendre symbols $\left(\frac{5}{1013}\right)$ or $\left(\frac{-5}{1013}\right)$ is 1 , so calculating we have

$$
\left(\frac{5}{1013}\right)=\left(\frac{1013}{5}\right)=\left(\frac{3}{5}\right)=-1
$$

and

$$
\left(\frac{-5}{1013}\right)=\left(\frac{-1}{1013}\right)\left(\frac{5}{1013}\right)=(-1)^{\frac{1013-1}{2}}\left(\frac{5}{1013}\right)=\left(\frac{5}{1013}\right)=-1
$$

so 25 is not a quadratic residue modulo 1013, hence it cannot be a solution of $x^{4} \equiv 25(\bmod 1013)$.

Problem 2. Prove that if $\mathbf{N P} \subseteq \mathbf{c o R P}$, then $\mathbf{Z P P}=\mathbf{N P}$
Solution.
We know that $\mathbf{R P} \subseteq \mathbf{N P}$ and by hypothesis $\mathbf{N P} \subseteq \mathbf{c o R P}$, so

$$
\mathbf{R P} \subseteq \mathbf{N P} \subseteq \mathbf{c o R P}
$$

and because coRP $\subseteq \mathbf{c o N P}$, we get that

$$
\mathbf{R P} \subseteq \mathbf{N P} \subseteq \mathbf{c o R P} \subseteq \mathbf{c o N P}
$$

Now, because $\mathbf{N P} \subseteq \mathbf{c o R P}$, then $\mathbf{c o N P} \subseteq \mathbf{R P}$, so using this in the last chain we get

$$
\operatorname{coNP} \subseteq \mathbf{R P} \subseteq \mathbf{N P} \subseteq \operatorname{coRP} \subseteq \operatorname{coNP}
$$

Hence $\mathbf{c o N P}=\mathbf{R P}=\mathbf{N P}=\mathbf{c o R P}$. Finally, let's notice that

$$
\mathbf{Z P P}=\mathbf{R P} \cap \operatorname{coRP}=\mathbf{N P} \cap \mathbf{N P}=\mathbf{N P}
$$

showing what was requested.

