
Circuit Complexity

• Circuit complexity is based on boolean circuits instead

of Turing machines.

• A boolean circuit with n inputs computes a boolean

function of n variables.

• Now, identify true/1 with “yes” and false/0 with “no.”

• Then a boolean circuit with n inputs accepts certain

strings in { 0, 1 }n.

• To relate circuits with an arbitrary language, we need

one circuit for each possible input length n.
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Formal Definitions

• The size of a circuit is the number of gates in it.

• A family of circuits is an infinite sequence

C = (C0, C1, . . .) of boolean circuits, where Cn has n

boolean inputs.

• For input x ∈ {0, 1}∗, C| x | outputs 1 if and only if

x ∈ L.

• In other words,

Cn accepts L ∩ {0, 1}n.
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Formal Definitions (concluded)

• L ⊆ {0, 1}∗ has polynomial circuits if there is a family

of circuits C such that:

– The size of Cn is at most p(n) for some fixed

polynomial p.

– Cn accepts L ∩ {0, 1}n.
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Exponential Circuits Suffice for All Languages

• Theorem 15 (p. 194) implies that there are languages

that cannot be solved by circuits of size 2n/(2n).

• But exponential circuits can solve all problems,

decidable or otherwise!
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Exponential Circuits Suffice for All Languages
(continued)

Proposition 71 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2n+2.

• We will show that for any language L ⊆ {0, 1}∗,
L ∩ {0, 1}n can be decided by a circuit of size 2n+2.

• Define boolean function f : {0, 1}n → {0, 1}, where

f(x1x2 · · ·xn) =

 1 x1x2 · · ·xn ∈ L,

0 x1x2 · · ·xn ̸∈ L.
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The Proof (concluded)

• Clearly, any circuit that implements f decides L.

• Now,

f(x1x2 · · ·xn) = (x1 ∧ f(1x2 · · ·xn)) ∨ (¬x1 ∧ f(0x2 · · ·xn)).

• The circuit size s(n) for f(x1x2 · · ·xn) hence satisfies

s(n) = 4 + 2s(n− 1)

with s(1) = 1.

• Solve it to obtain s(n) = 5× 2n−1 − 4 ≤ 2n+2.
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The Circuit Complexity of P

Proposition 72 All languages in P have polynomial

circuits.

• Let L ∈ P be decided by a TM in time p(n).

• By Corollary 32 (p. 292), there is a circuit with

O(p(n)2) gates that accepts L ∩ {0, 1}n.

• The size of the circuit depends only on L and the length

of the input.

• The size of the circuit is polynomial in n.
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Polynomial Circuits vs. P

• Is the converse of Proposition 72 true?

– Do polynomial circuits accept only languages in P?

• No.

• Polynomial circuits can accept undecidable languages!

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 586



Languages That Polynomial Circuits Accept

• Let L ⊆ {0, 1}∗ be an undecidable language.

• Let U = {1n : the binary expansion of n is in L}.a

– For example, 111111 ∈ U if 1012 ∈ L.

• U is also undecidable (prove it).

• U ∩ {1}n can be accepted by the trivial circuit Cn that

outputs 1 if 1n ∈ U and outputs 0 if 1n ̸∈ U .b

• The family of circuits (C0, C1, . . .) is polynomial in size.

aAssume n’s leading bit is always 1 without loss of generality.
bWe may not know which is the case for general n.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 587



A Patch

• Despite the simplicity of a circuit, the previous

discussions imply the following:

– Circuits are not a realistic model of computation.

– Polynomial circuits are not a plausible notion of

efficient computation.

• What is missing?

• The effective and efficient constructibility of

C0, C1, . . . .
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Uniformity

• A family (C0, C1, . . .) of circuits is uniform if there is a

logn-space bounded TM which on input 1n outputs Cn.

– Note that n is the length of the input to Cn.

– Circuits now cannot accept undecidable languages

(why?).

– The circuit family on p. 587 is not constructible by a

single Turing machine (algorithm).

• A language has uniformly polynomial circuits if

there is a uniform family of polynomial circuits that

decide it.
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Uniformly Polynomial Circuits and P

Theorem 73 L ∈ P if and only if L has uniformly

polynomial circuits.

• One direction was proved in Proposition 72 (p. 585).

• Now suppose L has uniformly polynomial circuits.

• A TM decides x ∈ L in polynomial time as follows:

– Calculate n = |x |.
– Generate Cn in log n space, hence polynomial time.

– Evaluate the circuit with input x in polynomial time.

• Therefore L ∈ P.
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Relation to P vs. NP

• Theorem 73 implies that P ̸= NP if and only if

NP-complete problems have no uniformly polynomial

circuits.

• A stronger conjecture: NP-complete problems have no

polynomial circuits, uniformly or not.

• The above is currently the preferred approach to proving

the P ̸= NP conjecture—without success so far.
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BPP’s Circuit Complexity

Theorem 74 (Adleman (1978)) All languages in BPP

have polynomial circuits.

• Our proof will be nonconstructive in that only the

existence of the desired circuits is shown.

– Recall our proof of Theorem 15 (p. 194).

– Something exists if its probability of existence is

nonzero.

• It is not known how to efficiently generate circuit Cn.

• In fact, if the construction of Cn can be made efficient,

then P = BPP, an unlikely result.
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The Proof

• Let L ∈ BPP be decided by a precise polynomial-time

NTM N by clear majority.

• We shall prove that L has polynomial circuits C0, C1, . . ..

– These circuits cannot make mistakes.

• Suppose N runs in time p(n), where p(n) is a

polynomial.

• Let An = {a1, a2, . . . , am}, where ai ∈ {0, 1}p(n).

• Each ai ∈ An represents a sequence of nondeterministic

choices (i.e., a computation path) for N .

• Pick m = 12(n+ 1).
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The Proof (continued)

• Let x be an input with |x | = n.

• Circuit Cn simulates N on x with each sequence of

choices in An and then takes the majority of the m

outcomes.a

• As N with ai is a polynomial-time deterministic TM, it

can be simulated by polynomial circuits of size O(p(n)2).

– See the proof of Proposition 72 (p. 585).

• The size of Cn is therefore O(mp(n)2) = O(np(n)2).

– This is a polynomial.
aAs m is even, there may be no clear majority. Still, the probability

of that happening is very small and does not materially affect our general

conclusion. Thanks to a lively class discussion on December 14, 2010.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 594



The Circuit

DP
D�

D� D�

0DMRULW\�ORJLF

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 595



The Proof (continued)

• We now confirm the existence of an An making Cn

correct on all n-bit inputs.

• Call ai bad if it leads N to an error (a false positive or a

false negative).

• Select An uniformly randomly.

• For each x ∈ {0, 1}n, 1/4 of the computations of N are

erroneous.

• Because the sequences in An are chosen randomly and

independently, the expected number of bad ai’s is m/4.a

aSo the proof will not work for NP. Contributed by Mr. Ching-Hua

Yu (D00921025) on December 11, 2012.
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The Proof (continued)

• By the Chernoff bound (p. 565), the probability that the

number of bad ai’s is m/2 or more is at most

e−m/12 < 2−(n+1).

• The error probability of using majority rule is thus

< 2−(n+1) for each x ∈ {0, 1}n.

• The probability that there is an x such that An results

in an incorrect answer is < 2n2−(n+1) = 2−1.

– Recall the union bound:

prob[A ∪B ∪ · · · ] ≤ prob[A ] + prob[B ] + · · · .

• Note that each An yields a circuit.
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The Proof (concluded)

• We just showed that at least half of them are correct.

• So with probability ≥ 0.5, a random An produces a

correct Cn for all inputs of length n.

• Because this probability exceeds 0, an An that makes

majority vote work for all inputs of length n exists.

• Hence a correct Cn exists.a

• We have used the probabilistic method.b

aQuine (1948), “To be is to be the value of a bound variable.”
bThe proof is a counting argument phrased in the probabilistic lan-

guage.
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Leonard Adlemana (1945–)

aTuring Award (2002).
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Cryptography
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Whoever wishes to keep a secret

must hide the fact that he possesses one.

— Johann Wolfgang von Goethe (1749–1832)
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Cryptography

• Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

• The protocol should be such that the message is known

only to Alice and Bob.

• The art and science of keeping messages secure is

cryptography.

Alice -
Eve

Bob
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Encryption and Decryption

• Alice and Bob agree on two algorithms E and D—the

encryption and the decryption algorithms.

• Both E and D are known to the public in the analysis.

• Alice runs E and wants to send a message x to Bob.

• Bob operates D.

• Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

• Alice sends y = E(e, x) to Bob, who then performs

D(d, y) = x to recover x.

• x is called plaintext, and y is called ciphertext.a

aBoth “zero” and “cipher” come from the same Arab word.
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Some Requirements

• D should be an inverse of E given e and d.

• D and E must both run in (probabilistic) polynomial

time.

• Eve should not be able to recover x from y without

knowing d.

– As D is public, d must be kept secret.

– e may or may not be a secret.
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Degrees of Security

• Perfect secrecy: After a ciphertext is intercepted by

the enemy, the a posteriori probabilities of the plaintext

that this ciphertext represents are identical to the a

priori probabilities of the same plaintext before the

interception.

– The probability that plaintext P occurs is

independent of the ciphertext C being observed.

– So knowing C yields no advantage in recovering P.

• Such systems are said to be informationally secure.

• A system is computationally secure if breaking it is

theoretically possible but computationally infeasible.
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Conditions for Perfect Secrecya

• Consider a cryptosystem where:

– The space of ciphertext is as large as that of keys.

– Every plaintext has a nonzero probability of being

used.

• It is perfectly secure if and only if the following hold.

– A key is chosen with uniform distribution.

– For each plaintext x and ciphertext y, there exists a

unique key e such that E(e, x) = y.

aShannon (1949).
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The One-Time Pada

1: Alice generates a random string r as long as x;

2: Alice sends r to Bob over a secret channel;

3: Alice sends x⊕ r to Bob over a public channel;

4: Bob receives y;

5: Bob recovers x := y ⊕ r;

aMauborgne and Vernam (1917); Shannon (1949). It was allegedly

used for the hotline between Russia and U.S.
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Analysis

• The one-time pad uses e = d = r.

• This is said to be a private-key cryptosystem.

• Knowing x and knowing r are equivalent.

• Because r is random and private, the one-time pad

achieves perfect secrecy (see also p. 606).

• The random bit string must be new for each round of

communication.

– Cryptographically strong pseudorandom

generators require exchanging only the seed once.

• The assumption of a private channel is problematic.
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Public-Key Cryptographya

• Suppose only d is private to Bob, whereas e is public

knowledge.

• Bob generates the (e, d) pair and publishes e.

• Anybody like Alice can send E(e, x) to Bob.

• Knowing d, Bob can recover x by D(d,E(e, x)) = x.

• The assumptions are complexity-theoretic.

– It is computationally difficult to compute d from e.

– It is computationally difficult to compute x from y

without knowing d.

aDiffie and Hellman (1976).
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Whitfield Diffie (1944–)
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Martin Hellman (1945–)
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Complexity Issues

• Given y and x, it is easy to verify whether E(e, x) = y.

• Hence one can always guess an x and verify.

• Cracking a public-key cryptosystem is thus in NP.

• A necessary condition for the existence of secure

public-key cryptosystems is P ̸= NP.

• But more is needed than P ̸= NP.

• For instance, it is not sufficient that D is hard to

compute in the worst case.

• It should be hard in “most” or “average” cases.
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One-Way Functions

A function f is a one-way function if the following hold.a

1. f is one-to-one.

2. For all x ∈ Σ∗, |x |1/k ≤ |f(x)| ≤ |x |k for some k > 0.

• f is said to be honest.

3. f can be computed in polynomial time.

4. f−1 cannot be computed in polynomial time.

• Exhaustive search works, but it must be slow.

aDiffie and Hellman (1976); Boppana and Lagarias (1986); Grollmann

and Selman (1988); Ko (1985); Ko, Long, and Du (1986); Watanabe

(1985); Young (1983).
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Existence of One-Way Functions

• Even if P ̸= NP, there is no guarantee that one-way

functions exist.

• No functions have been proved to be one-way.

• Is breaking glass a one-way function?
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Candidates of One-Way Functions

• Modular exponentiation f(x) = gx mod p, where g is a

primitive root of p.

– Discrete logarithm is hard.a

• The RSAb function f(x) = xe mod pq for an odd e

relatively prime to ϕ(pq).

– Breaking the RSA function is hard.

aConjectured to be 2n
ϵ
for some ϵ > 0 in both the worst-case sense

and average sense. It is in NP in some sense (Grollmann and Selman

(1988)).
bRivest, Shamir, and Adleman (1978).
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Candidates of One-Way Functions (concluded)

• Modular squaring f(x) = x2 mod pq.

– Determining if a number with a Jacobi symbol 1 is a

quadratic residue is hard—the quadratic

residuacity assumption (QRA).a

aDue to Gauss.
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The RSA Function

• Let p, q be two distinct primes.

• The RSA function is xe mod pq for an odd e relatively

prime to ϕ(pq).

– By Lemma 52 (p. 444),

ϕ(pq) = pq

(
1− 1

p

)(
1− 1

q

)
= pq − p− q + 1. (14)

• As gcd(e, ϕ(pq)) = 1, there is a d such that

ed ≡ 1 mod ϕ(pq),

which can be found by the Euclidean algorithm.a

aOne can think of d as e−1.
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A Public-Key Cryptosystem Based on RSA

• Bob generates p and q.

• Bob publishes pq and the encryption key e, a number

relatively prime to ϕ(pq).

– The encryption function is y = xe mod pq.

– Bob calculates ϕ(pq) by Eq. (14) (p. 617).

– Bob then calculates d such that ed = 1 + kϕ(pq) for

some k ∈ Z.

• The decryption function is yd mod pq.

• It works because yd = xed = x1+kϕ(pq) = x mod pq by

the Fermat-Euler theorem when gcd(x, pq) = 1 (p. 455).
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The “Security” of the RSA Function

• Factoring pq or calculating d from (e, pq) seems hard.

– See also p. 451.

• Breaking the last bit of RSA is as hard as breaking the

RSA.a

• Recommended RSA key sizes:b

– 1024 bits up to 2010.

– 2048 bits up to 2030.

– 3072 bits up to 2031 and beyond.

aAlexi, Chor, Goldreich, and Schnorr (1988).
bRSA (2003). RSA was acquired by EMC in 2006 for 2.1 billion US

dollars.
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The “Security” of the RSA Function (continued)

• Recall that problem A is “harder than” problem B if

solving A results in solving B.

– Factorization is “harder than” breaking the RSA.

– It is not hard to show that calculating Euler’s phi

functiona is “harder than” breaking the RSA.

– Factorization is “harder than” calculating Euler’s phi

function (see Lemma 52 on p. 444).

– So factorization is harder than calculating Euler’s phi

function, which is harder than breaking the RSA.

aWhen the input is not factorized!
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The “Security” of the RSA Function (concluded)

• Factorization cannot be NP-hard unless NP = coNP.a

• So breaking the RSA is unlikely to imply P = NP.

aBrassard (1979).
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Adi Shamir, Ron Rivest, and Leonard Adleman
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Ron Rivesta (1947–)

aTuring Award (2002).
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Adi Shamira (1952–)

aTuring Award (2002).
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The Secret-Key Agreement Problem

• Exchanging messages securely using a private-key

cryptosystem requires Alice and Bob possessing the

same key (p. 608).

• How can they agree on the same secret key when the

channel is insecure?

• This is called the secret-key agreement problem.

• It was solved by Diffie and Hellman (1976) using

one-way functions.
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The Diffie-Hellman Secret-Key Agreement Protocol

1: Alice and Bob agree on a large prime p and a primitive

root g of p; {p and g are public.}
2: Alice chooses a large number a at random;

3: Alice computes α = ga mod p;

4: Bob chooses a large number b at random;

5: Bob computes β = gb mod p;

6: Alice sends α to Bob, and Bob sends β to Alice;

7: Alice computes her key βa mod p;

8: Bob computes his key αb mod p;
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Analysis

• The keys computed by Alice and Bob are identical as

βa = gba = gab = αb mod p.

• To compute the common key from p, g, α, β is known as

the Diffie-Hellman problem.

• It is conjectured to be hard.

• If discrete logarithm is easy, then one can solve the

Diffie-Hellman problem.

– Because a and b can then be obtained by Eve.

• But the other direction is still open.
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A Parallel History

• Diffie and Hellman’s solution to the secret-key

agreement problem led to public-key cryptography.

• At around the same time (or earlier) in Britain, the

RSA public-key cryptosystem was invented first before

the Diffie-Hellman secret-key agreement scheme was.

– Ellis, Cocks, and Williamson of the Communications

Electronics Security Group of the British Government

Communications Head Quarters (GCHQ).
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Is a forged signature the same sort of thing

as a genuine signature,

or is it a different soft of thing?

— Gilbert Ryle (1900–1976),

The Concept of Mind (1949)

“Katherine, I gave him the code.

He verified the code.”

“But did you verify him?”

— The Numbers Station (2013)
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