The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.
 - So it is an exponential-time algorithm.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- Later, we will focus on efficient "probabilistic" algorithms for PRIMES (used in *Mathematica*, e.g.).

```
1: if n = a^b for some a, b > 1 then
 2:
      return "composite";
 3: end if
 4: for r = 2, 3, \ldots, n - 1 do
 5:
    if gcd(n, r) > 1 then
 6:
        return "composite";
 7:
      end if
 8:
      if r is a prime then
 9:
     Let q be the largest prime factor of r-1;
    if q \ge 4\sqrt{r} \log n and n^{(r-1)/q} \ne 1 \mod r then
10:
11:
       break; {Exit the for-loop.}
12:
        end if
13:
      end if
14: end for \{r-1 \text{ has a prime factor } q \ge 4\sqrt{r} \log n.\}
15: for a = 1, 2, ..., 2\sqrt{r} \log n do
     if (x-a)^n \neq (x^n-a) \mod (x^r-1) in Z_n[x] then
16:
17:
        return "composite";
18:
      end if
19: end for
20: return "prime"; {The only place with "prime" output.}
```

The Primality Problem (concluded)

- NP ∩ coNP is the class of problems that have succinct certificates and succinct disqualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- We will see that $PRIMES \in NP \cap coNP$.
 - In fact, $PRIMES \in P$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) ^a A number p > 1 is a prime if and only if there is a number 1 < r < p such that

- 1. $r^{p-1} = 1 \mod p$, and
- 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- This r is called the **primitive root** or **generator**.
- We will prove the theorem later (see pp. 442ff).

^aFrançois Edouard Anatole Lucas (1842–1891); Derrick Henry Lehmer (1905–1991).

Derrick Lehmer (1905–1991)

Pratt's Theorem

Theorem 50 (Pratt (1975)) PRIMES $\in NP \cap coNP$.

- PRIMES is in coNP because a succinct disqualification is a proper divisor.
 - A proper divisor of a number n means n is not a prime.
- Now suppose p is a prime.
- p's certificate includes the r in Theorem 49 (p. 431).
- Use recursive doubling to check if r^{p−1} = 1 mod p in time polynomial in the length of the input, log₂ p.
 r, r², r⁴, ... mod p, a total of ~ log₂ p steps.

The Proof (concluded)

- We also need all *prime* divisors of p 1: q_1, q_2, \ldots, q_k .
 - Whether r, q_1, \ldots, q_k are easy to find is irrelevant.
 - There may be multiple choices for r.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.
- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.
- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:

$$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$$

- We next prove that C(p) is succinct.
- As a result, C(p) can be checked in polynomial time.

The Succinctness of the Certificate

Lemma 51 The length of C(p) is at most quadratic at $5 \log_2^2 p$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k \leq \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.

– Reason:

$$2^k \le \prod_{i=1}^k q_i \le p-1.$$

• Note also that, as $q_1 = 2$,

$$\prod_{i=2}^{k} q_i \le \frac{p-1}{2}.\tag{4}$$

The Proof (continued)

- C(p) requires:
 - -2 parentheses;
 - $-2k < 2\log_2 p$ separators (at most $2\log_2 p$ bits);

-r (at most $\log_2 p$ bits);

 $-q_1 = 2$ and its certificate 1 (at most 5 bits);

$$-q_2,\ldots,q_k$$
 (at most $2\log_2 p$ bits);^a

$$- C(q_2), \ldots, C(q_k).$$

^aWhy?

The Proof (concluded)

• C(p) is succinct because, by induction,

$$\begin{aligned} |C(p)| &\leq 5 \log_2 p + 5 + 5 \sum_{i=2}^k \log_2^2 q_i \\ &\leq 5 \log_2 p + 5 + 5 \left(\sum_{i=2}^k \log_2 q_i \right)^2 \\ &\leq 5 \log_2 p + 5 + 5 \log_2^2 \frac{p-1}{2} \quad \text{by inequality (4)} \\ &< 5 \log_2 p + 5 + 5 (\log_2 p - 1)^2 \\ &= 5 \log_2^2 p + 10 - 5 \log_2 p \leq 5 \log_2^2 p \end{aligned}$$
for $p \geq 4.$

A Certificate for $23^{\rm a}$

• Note that 7 is a primitive root modulo 23 and $23 - 1 = 22 = 2 \times 11$.

• So

$$C(23) = (7, 2, C(2), 11, C(11)).$$

- Note that 2 is a primitive root modulo 11 and $11 1 = 10 = 2 \times 5$.
- So

$$C(11) = (2, 2, C(2), 5, C(5)).$$

^aThanks to a lively discussion on April 24, 2008.

A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $5-1=4=2^2$.
- So

$$C(5) = (2, 2, C(2)).$$

• In summary,

C(23) = (7, 2, C(2), 11, (2, 2, C(2), 5, (2, 2, C(2)))).

Basic Modular Arithmetics $^{\rm a}$

- Let $m, n \in \mathbb{Z}^+$.
- $m \mid n$ means m divides n; m is n's **divisor**.
- We call the numbers 0, 1, ..., n − 1 the residue modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 49 (p. 431) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 49 (p. 431).

^aCarl Friedrich Gauss.

Basic Modular Arithmetics (concluded)

• We use

 $a \equiv b \mod n$

- if $n \mid (a b)$. - So $25 \equiv 38 \mod 13$.
- We use

 $a = b \mod n$

if b is the remainder of a divided by n.

- So $25 = 12 \mod 13$.

Euler's $^{\rm a}$ Totient or Phi Function

• Let

$$\Phi(n) = \{m : 1 \le m < n, \gcd(m, n) = 1\}$$

be the set of all positive integers less than n that are prime to n.^b

 $- \Phi(12) = \{1, 5, 7, 11\}.$

- Define Euler's function of n to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing *n*'s factorization.

^aLeonhard Euler (1707–1783). ^b Z_n^* is an alternative notation.

Two Properties of Euler's Function

The inclusion-exclusion principle^a can be used to prove the following.

Lemma 52 $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

• If $n = p_1^{e_1} p_2^{e_2} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{\ell} \left(1 - \frac{1}{p_i} \right).$$

Corollary 53 $\phi(mn) = \phi(m) \phi(n)$ if gcd(m, n) = 1.

^aConsult any textbook on discrete mathematics.

A Key Lemma

Lemma 54 $\sum_{m|n} \phi(m) = n$.

- Let $\prod_{i=1}^{\ell} p_i^{k_i}$ be the prime factorization of n and consider $\prod_{i=1}^{\ell} [\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i})]. \quad (5)$
- Equation (5) equals n because $\phi(p_i^k) = p_i^k p_i^{k-1}$ by Lemma 52 (p. 444) so $\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i}) = p_i^{k_i}$.
- Expand Eq. (5) to yield

$$\sum_{k_1' \le k_1, \dots, k_\ell' \le k_\ell} \prod_{i=1}^\ell \phi(p_i^{k_i'}).$$

The Proof (concluded)

• By Corollary 53 (p. 444),

$$\prod_{i=1}^{\ell} \phi(p_i^{k'_i}) = \phi\left(\prod_{i=1}^{\ell} p_i^{k'_i}\right).$$

• So Eq. (5) becomes

$$\sum_{k_1' \le k_1, \dots, k_\ell' \le k_\ell} \phi\left(\prod_{i=1}^\ell p_i^{k_i'}\right).$$

- Each $\prod_{i=1}^{\ell} p_i^{k'_i}$ is a unique divisor of $n = \prod_{i=1}^{\ell} p_i^{k_i}$.
- Equation (5) becomes

$$\sum_{m|n} \phi(m).$$

Leonhard Euler (1707–1783)

The Density Attack for $\ensuremath{\operatorname{PRIMES}}$

- 1: Pick $k \in \{1, \ldots, n\}$ randomly;
- 2: if $k \mid n$ and $k \neq n$ then
- 3: **return** "*n* is composite";
- 4: else
- 5: **return** "n is (probably) a prime";

6: **end if**

The Density Attack for **PRIMES** (continued)

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white ring) is

$$rac{\phi(n)}{n}$$

• When n = pq, where p and q are distinct primes,

$$\frac{\phi(n)}{n} = \frac{pq - p - q + 1}{pq} > 1 - \frac{1}{q} - \frac{1}{p}.$$

The Density Attack for **PRIMES** (concluded)

- So the ratio of numbers $\leq n$ not relatively prime to n (the grey area) is < (1/q) + (1/p).
 - The "density attack" has probability about $2/\sqrt{n}$ of factoring n = pq when $p \sim q = O(\sqrt{n})$.
 - The "density attack" to factor n = pq hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q = O(\sqrt{n})$.

- This running time is exponential: $\Omega(2^{0.5 \log_2 n})$.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- For any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

 $x = a_1 \mod n_1,$ $x = a_2 \mod n_2,$ \vdots $x = a_k \mod n_k,$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem^a

Lemma 55 For all 0 < a < p, $a^{p-1} = 1 \mod p$.

- Recall $\Phi(p) = \{1, 2, \dots, p-1\}.$
- Consider $a\Phi(p) = \{am \mod p : m \in \Phi(p)\}.$

•
$$a\Phi(p) = \Phi(p).$$

 $-a\Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and p-1.

- Suppose $am = am' \mod p$ for m > m', where $m, m' \in \Phi(p)$.
- That means $a(m m') = 0 \mod p$, and p divides a or m m', which is impossible.

^aPierre de Fermat (1601-1665).

The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield (p-1)!.
- Multiply all the numbers in $a\Phi(p)$ to yield $a^{p-1}(p-1)!$.
- As $a\Phi(p) = \Phi(p), a^{p-1}(p-1)! = (p-1)! \mod p$.
- Finally, $a^{p-1} = 1 \mod p$ because $p \not| (p-1)!$.

The Fermat-Euler Theorem^a

Corollary 56 For all $a \in \Phi(n)$, $a^{\phi(n)} = 1 \mod n$.

- The proof is similar to that of Lemma 55 (p. 453).
- Consider $a\Phi(n) = \{am \mod n : m \in \Phi(n)\}.$
- $a\Phi(n) = \Phi(n)$.
 - $-a\Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and n-1 and relatively prime to n.
 - Suppose $am = am' \mod n$ for m' < m < n, where $m, m' \in \Phi(n)$.
 - That means $a(m m') = 0 \mod n$, and n divides a or m m', which is impossible.

^aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded) a

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a\Phi(n)$ to yield $a^{\phi(n)}\prod_{m\in\Phi(n)}m.$

• As
$$a\Phi(n) = \Phi(n)$$
,

$$\prod_{m \in \Phi(n)} m = a^{\phi(n)} \left(\prod_{m \in \Phi(n)} m\right) \mod n.$$

• Finally, $a^{\phi(n)} = 1 \mod n$ because $n \not\mid \prod_{m \in \Phi(n)} m$.

^aSome typographical errors corrected by Mr. Jung-Ying Chen (D95723006) on November 18, 2008.

An Example

• As
$$12 = 2^2 \times 3$$
,

$$\phi(12) = 12 \times \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) = 4.$$

• In fact,
$$\Phi(12) = \{1, 5, 7, 11\}.$$

• For example,

$$5^4 = 625 = 1 \mod 12.$$

Exponents

• The **exponent** of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^+$ such that

$$m^k = 1 \bmod p.$$

- Every residue $s \in \Phi(p)$ has an exponent.
 - $-1, s, s^2, s^3, \ldots$ eventually repeats itself modulo p, say $s^i = s^j \mod p$, which means $s^{j-i} = 1 \mod p$.
- If the exponent of m is k and $m^{\ell} = 1 \mod p$, then $k|\ell$.
 - Otherwise, $\ell = qk + a$ for 0 < a < k, and $m^{\ell} = m^{qk+a} = m^a = 1 \mod p$, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide p-1.
- A primitive root of p is thus a number with exponent p-1.
- Let R(k) denote the total number of residues in $\Phi(p) = \{1, 2, \dots, p-1\}$ that have exponent k.
- We already knew that R(k) = 0 for $k \not| (p-1)$.
- So

$$\sum_{k|(p-1)} R(k) = p - 1$$

as every number has an exponent.

Size of R(k)

• Any $a \in \Phi(p)$ of exponent k satisfies

$$x^k = 1 \bmod p.$$

- Hence there are at most k residues of exponent k, i.e., $R(k) \le k$, by Lemma 57 (p. 458).
- Let s be a residue of exponent k.
- $1, s, s^2, \ldots, s^{k-1}$ are distinct modulo p.
 - Otherwise, $s^i = s^j \mod p$ with i < j.
 - Then $s^{j-i} = 1 \mod p$ with j i < k, a contradiction.
- As all these k distinct numbers satisfy $x^k = 1 \mod p$, they comprise all the solutions of $x^k = 1 \mod p$.

Size of R(k) (continued)

- But do all of them have exponent k (i.e., R(k) = k)?
- And if not (i.e., R(k) < k), how many of them do?
- Pick s^{ℓ} , where $\ell < k$.
- Suppose $\ell \notin \Phi(k)$ with $gcd(\ell, k) = d > 1$.
- Then

$$(s^{\ell})^{k/d} = (s^k)^{\ell/d} = 1 \mod p.$$

- Therefore, s^{ℓ} has exponent at most k/d < k.
- We conclude that

$$R(k) \le \phi(k).$$

Size of R(k) (concluded)

• Because all p-1 residues have an exponent,

$$p - 1 = \sum_{k \mid (p-1)} R(k) \le \sum_{k \mid (p-1)} \phi(k) = p - 1$$

by Lemma 54 (p. 445).

• Hence

$$R(k) = \begin{cases} \phi(k) & \text{when } k | (p-1) \\ 0 & \text{otherwise} \end{cases}$$

- In particular, $R(p-1) = \phi(p-1) > 0$, and p has at least one primitive root.
- This proves one direction of Theorem 49 (p. 431).

A Few Calculations

- Let p = 13.
- From p. 455, we know $\phi(p-1) = 4$.
- Hence R(12) = 4.
- Indeed, there are 4 primitive roots of p.
- As

$$\Phi(p-1) = \{1, 5, 7, 11\},\$$

the primitive roots are

$$g^1, g^5, g^7, g^{11}$$

for any primitive root g.

The Other Direction of Theorem 49 (p. 431)

We show p is a prime if there is a number r such that
1. r^{p-1} = 1 mod p, and

2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.

- Suppose *p* is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1} = 1 \mod p$ (note gcd(r, p) = 1).
- We will show that the 2nd condition must be violated.

The Proof (continued)

- So we proceed to show $r^{(p-1)/q} = 1 \mod p$ for some prime divisor q of p 1.
- $r^{\phi(p)} = 1 \mod p$ by the Fermat-Euler theorem (p. 455).
- Because p is not a prime, $\phi(p) .$
- Let k be the smallest integer such that $r^k = 1 \mod p$.
- With the 1st condition, it is easy to show that $k \mid (p-1)$ (similar to p. 458).
- Note that $k \mid \phi(p)$ (p. 458).
- As $k \le \phi(p), k .$

The Proof (concluded)

- Let q be a prime divisor of (p-1)/k > 1.
- Then k|(p-1)/q.
- By the definition of k,

$$r^{(p-1)/q} = 1 \bmod p.$$

• But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
 - If you can find a satisfying truth assignment efficiently, then SAT is in P.
 - If you can find the best TSP tour efficiently, then TSP
 (D) is in P.
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
 - Let $\phi(x_1, x_2, \ldots, x_n)$ be a boolean expression.
 - If ϕ is satisfiable, then return a satisfying truth assignment.
 - Otherwise, return "no."
- We next show that if $SAT \in P$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FSAT Using SAT 1: $t := \epsilon$; {Truth assignment.} 2: if $\phi \in SAT$ then for i = 1, 2, ..., n do 3: 4: **if** $\phi[x_i = \texttt{true}] \in \text{SAT}$ **then** 5: $t := t \cup \{ x_i = \texttt{true} \};$ $6: \qquad \phi := \phi[x_i = \texttt{true}];$ 7: else 8: $t := t \cup \{ x_i = \texttt{false} \};$ $\phi := \phi[x_i = \texttt{false}];$ 9: end if 10: end for 11: 12:return t; 13: **else** 14: return "no"; 15: end if

Analysis

- If SAT can be solved in polynomial time, so can FSAT.
 - There are $\leq n + 1$ calls to the algorithm for SAT.^a
 - Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence SAT and FSAT are equally hard (or easy).
- Note that this reduction from FSAT to SAT is not a Karp reduction (recall p. 247).
- Instead, it calls SAT multiple times as a subroutine and moves on SAT's outputs.

^aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

TSP and TSP (D) Revisited

- We are given n cities 1, 2, ..., n and integer distances $d_{ij} = d_{ji}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
 - The shortest total distance is at most $\sum_{i,j} d_{ij}$.
 - * Recall that the input string contains d_{11}, \ldots, d_{nn} .
 - * Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(D) \in P$, then TSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

- Perform a binary search over interval [0,2^{|x|}] by calling TSP (D) to obtain the shortest distance, C;
- 2: for i, j = 1, 2, ..., n do

3: Call TSP (D) with
$$B = C$$
 and $d_{ij} = C + 1$;

- 4: **if** "no" **then**
- 5: Restore d_{ij} to old value; {Edge [i, j] is critical.}
- 6: end if
- 7: end for
- 8: **return** the tour with edges whose $d_{ij} \leq C$;

Analysis

- An edge that is not on *any* optimal tour will be eliminated, with its d_{ij} set to C + 1.
- An edge which is not on *all remaining* optimal tours will also be eliminated.
- So the algorithm ends with *n* edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours!^a

^aThanks to a lively class discussion on November 12, 2013.

Analysis (concluded)

- There are $O(|x| + n^2)$ calls to the algorithm for TSP (D).
- Each call has an input length of O(|x|).
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Randomized Computation

I know that half my advertising works, I just don't know which half. — John Wanamaker

> I know that half my advertising is a waste of money, I just don't know which half! — McGraw-Hill ad.

Randomized Algorithms $^{\rm a}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient *deterministic* algorithms but for which very efficient randomized algorithms exist.
 - Extraction of square roots, for instance.
- There are problems where randomization is *necessary*.
 - Secure protocols.
- Randomized version can be more efficient.
 - Parallel algorithm for maximal independent set.^b

^aRabin (1976); Solovay and Strassen (1977).

^b "Maximal" (a local maximum) not "maximum" (a global maximum).

"Four Most Important Randomized Algorithms" $^{\rm a}$

- 1. Primality testing.^b
- 2. Graph connectivity using random walks.^c
- 3. Polynomial identity testing.^d
- 4. Algorithms for approximate counting.^e

^aTrevisan (2006).
^bRabin (1976); Solovay and Strassen (1977).
^cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
^dSchwartz (1980); Zippel (1979).
^eSinclair and Jerrum (1989).