The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- So it is an exponential-time algorithm.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- Later, we will focus on efficient "probabilistic" algorithms for PRIMES (used in Mathematica, e.g.).

```
    if n=\mp@subsup{a}{}{b}}\mathrm{ for some }a,b>1\mathrm{ then
    return "composite";
    end if
    for }r=2,3,\ldots,n-1 d
    if gcd}(n,r)>1\mathrm{ then
        return "composite";
        end if
        if r is a prime then
            Let q}\mathrm{ be the largest prime factor of r-1;
    10: if }q\geq4\sqrt{}{r}\operatorname{log}n\mathrm{ and }\mp@subsup{n}{}{(r-1)/q}\not=1\operatorname{mod}r\mathrm{ then
                break; {Exit the for-loop.}
            end if
        end if
        end for {r-1 has a prime factor q\geq4\sqrt{}{r}}\operatorname{log}n.
        for }a=1,2,\ldots,2\sqrt{}{r}\operatorname{log}n\mathrm{ do
        if (x-a\mp@subsup{)}{}{n}\not=(\mp@subsup{x}{}{n}-a)\operatorname{mod}(\mp@subsup{x}{}{r}-1)\mathrm{ in }\mp@subsup{Z}{n}{}[x] then
            return "composite";
        end if
        end for
20: return "prime"; {The only place with "prime" output.}
```


The Primality Problem (concluded)

- $\mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- We will see that primes $\in \mathrm{NP} \cap$ coNP.
- In fact, PRIMES $\in \mathrm{P}$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) a A number $p>1$ is a prime if and only if there is a number $1<r<p$ such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- This r is called the primitive root or generator.
- We will prove the theorem later (see pp. 442ff).
${ }^{\text {a }}$ François Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).

Derrick Lehmer (1905-1991)

Pratt's Theorem

Theorem 50 (Pratt (1975)) Primes $\in N P \cap c o N P$.

- Primes is in coNP because a succinct disqualification is a proper divisor.
- A proper divisor of a number n means n is not a prime.
- Now suppose p is a prime.
- p 's certificate includes the r in Theorem 49 (p. 431).
- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$. $-r, r^{2}, r^{4}, \ldots \bmod p$, a total of $\sim \log _{2} p$ steps.

The Proof (concluded)

- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Whether r, q_{1}, \ldots, q_{k} are easy to find is irrelevant.
- There may be multiple choices for r.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.
- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the q_{i} 's.
- The complete certificate is recursive and tree-like:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right)
$$

- We next prove that $C(p)$ is succinct.
- As a result, $C(p)$ can be checked in polynomial time.

The Succinctness of the Certificate

Lemma 51 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$.
- In general, $p-1$ has $k \leq \log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$.
- Reason:

$$
2^{k} \leq \prod_{i=1}^{k} q_{i} \leq p-1 .
$$

- Note also that, as $q_{1}=2$,

$$
\begin{equation*}
\prod_{i=2}^{k} q_{i} \leq \frac{p-1}{2} \tag{4}
\end{equation*}
$$

The Proof (continued)

- $C(p)$ requires:
- 2 parentheses;
$-2 k<2 \log _{2} p$ separators (at most $2 \log _{2} p$ bits);
- r (at most $\log _{2} p$ bits);
- $q_{1}=2$ and its certificate 1 (at most 5 bits);
$-q_{2}, \ldots, q_{k}$ (at most $2 \log _{2} p$ bits); ${ }^{\text {a }}$
- $C\left(q_{2}\right), \ldots, C\left(q_{k}\right)$.

[^0]
The Proof (concluded)

- $C(p)$ is succinct because, by induction,

$$
\begin{aligned}
&|C(p)| \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \quad \text { by inequality (4) } \\
&<5 \log _{2} p+5+5\left(\log _{2} p-1\right)^{2} \\
&=5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p \\
& \text { for } p \geq 4 .
\end{aligned}
$$

A Certificate for 23^{a}

- Note that 7 is a primitive root modulo 23 and $23-1=22=2 \times 11$.
- So

$$
C(23)=(7,2, C(2), 11, C(11)) .
$$

- Note that 2 is a primitive root modulo 11 and $11-1=10=2 \times 5$.
- So

$$
C(11)=(2,2, C(2), 5, C(5)) .
$$

[^1]
A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $5-1=4=2^{2}$.
- So

$$
C(5)=(2,2, C(2)) .
$$

- In summary,

$$
C(23)=(7,2, C(2), 11,(2,2, C(2), 5,(2,2, C(2)))) .
$$

Basic Modular Arithmetics ${ }^{\text {a }}$

- Let $m, n \in \mathbb{Z}^{+}$.
- $m \mid n$ means m divides $n ; m$ is n 's divisor.
- We call the numbers $0,1, \ldots, n-1$ the residue modulo n.
- The greatest common divisor of m and n is denoted $\operatorname{gcd}(m, n)$.
- The r in Theorem 49 (p. 431) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 49 (p. 431).

[^2]
Basic Modular Arithmetics (concluded)

- We use

$$
a \equiv b \quad \bmod n
$$

if $n \mid(a-b)$.

- So $25 \equiv 38 \bmod 13$.
- We use

$$
a=b \bmod n
$$

if b is the remainder of a divided by n.

- So $25=12 \bmod 13$.

Euler's ${ }^{\text {a }}$ Totient or Phi Function

- Let

$$
\Phi(n)=\{m: 1 \leq m<n, \operatorname{gcd}(m, n)=1\}
$$

be the set of all positive integers less than n that are prime to $n .{ }^{\text {b }}$

$$
-\Phi(12)=\{1,5,7,11\}
$$

- Define Euler's function of n to be $\phi(n)=|\Phi(n)|$.
- $\phi(p)=p-1$ for prime p, and $\phi(1)=1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n 's factorization.

[^3]

Two Properties of Euler's Function

The inclusion-exclusion principle ${ }^{\mathrm{a}}$ can be used to prove the following.

Lemma $52 \phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

- If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{\ell}^{e_{\ell}}$ is the prime factorization of n, then

$$
\phi(n)=n \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right) .
$$

Corollary $53 \phi(m n)=\phi(m) \phi(n)$ if $\operatorname{gcd}(m, n)=1$.

[^4]
A Key Lemma

Lemma $54 \sum_{m \mid n} \phi(m)=n$.

- Let $\prod_{i=1}^{\ell} p_{i}^{k_{i}}$ be the prime factorization of n and consider

$$
\begin{equation*}
\prod_{i=1}^{\ell}\left[\phi(1)+\phi\left(p_{i}\right)+\cdots+\phi\left(p_{i}^{k_{i}}\right)\right] . \tag{5}
\end{equation*}
$$

- Equation (5) equals n because $\phi\left(p_{i}^{k}\right)=p_{i}^{k}-p_{i}^{k-1}$ by Lemma $52\left(\right.$ p. 444) so $\phi(1)+\phi\left(p_{i}\right)+\cdots+\phi\left(p_{i}^{k_{i}}\right)=p_{i}^{k_{i}}$.
- Expand Eq. (5) to yield

$$
\sum_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{\ell}^{\prime} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right) .
$$

The Proof (concluded)

- By Corollary 53 (p. 444),

$$
\prod_{i=1}^{\ell} \phi\left(p_{i}^{k_{i}^{\prime}}\right)=\phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right) .
$$

- So Eq. (5) becomes

$$
\sum_{k_{k_{1}^{\prime} \leq k_{1}, \ldots, k_{e}^{\prime} \leq k_{\ell}} \phi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}\right) . . ~ . . ~}^{\text {and }}
$$

- Each $\prod_{i=1}^{\ell} p_{i}^{k_{i}^{\prime}}$ is a unique divisor of $n=\prod_{i=1}^{\ell} p_{i}^{k_{i}}$.
- Equation (5) becomes

$$
\sum_{m \mid n} \phi(m) .
$$

Leonhard Euler (1707-1783)

The Density Attack for PRIMES

The Density Attack for PRimes

1: Pick $k \in\{1, \ldots, n\}$ randomly;
2: if $k \mid n$ and $k \neq n$ then
3: return " n is composite";
4: else
5: return " n is (probably) a prime";
6: end if

The Density Attack for Primes (continued)

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white ring) is

$$
\frac{\phi(n)}{n} .
$$

- When $n=p q$, where p and q are distinct primes,

$$
\frac{\phi(n)}{n}=\frac{p q-p-q+1}{p q}>1-\frac{1}{q}-\frac{1}{p} .
$$

The Density Attack for PRIMES (concluded)

- So the ratio of numbers $\leq n$ not relatively prime to n (the grey area) is $<(1 / q)+(1 / p)$.
- The "density attack" has probability about $2 / \sqrt{n}$ of factoring $n=p q$ when $p \sim q=O(\sqrt{n})$.
- The "density attack" to factor $n=p q$ hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q=O(\sqrt{n})$.
- This running time is exponential: $\Omega\left(2^{0.5 \log _{2} n}\right)$.

The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where n_{i} are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k},
\end{aligned}
$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 55 For all $0<a<p, a^{p-1}=1 \bmod p$.

- Recall $\Phi(p)=\{1,2, \ldots, p-1\}$.
- Consider $a \Phi(p)=\{a m \bmod p: m \in \Phi(p)\}$.
- $a \Phi(p)=\Phi(p)$.
$-a \Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and $p-1$.
- Suppose $a m=a m^{\prime} \bmod p$ for $m>m^{\prime}$, where $m, m^{\prime} \in \Phi(p)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod p$, and p divides a or $m-m^{\prime}$, which is impossible.

[^5]
The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield $(p-1)$!.
- Multiply all the numbers in $a \Phi(p)$ to yield $a^{p-1}(p-1)$!.
- As $a \Phi(p)=\Phi(p), a^{p-1}(p-1)!=(p-1)!\bmod p$.
- Finally, $a^{p-1}=1 \bmod p$ because $p \nmid(p-1)$!.

The Fermat-Euler Theorem ${ }^{\text {a }}$

Corollary 56 For all $a \in \Phi(n), a^{\phi(n)}=1 \bmod n$.

- The proof is similar to that of Lemma 55 (p. 453).
- Consider $a \Phi(n)=\{a m \bmod n: m \in \Phi(n)\}$.
- $a \Phi(n)=\Phi(n)$.
$-a \Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and $n-1$ and relatively prime to n.
- Suppose $a m=a m^{\prime} \bmod n$ for $m^{\prime}<m<n$, where $m, m^{\prime} \in \Phi(n)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod n$, and n divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a }}$ Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded) ${ }^{a}$

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a \Phi(n)$ to yield $a^{\phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a \Phi(n)=\Phi(n)$,

$$
\prod_{m \in \Phi(n)} m=a^{\phi(n)}\left(\prod_{m \in \Phi(n)} m\right) \bmod n
$$

- Finally, $a^{\phi(n)}=1 \bmod n$ because $n \backslash \prod_{m \in \Phi(n)} m$.
${ }^{\text {a Some typographical errors corrected by Mr. Jung-Ying Chen }}$ (D95723006) on November 18, 2008.

An Example

- As $12=2^{2} \times 3$,

$$
\phi(12)=12 \times\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4 .
$$

- In fact, $\Phi(12)=\{1,5,7,11\}$.
- For example,

$$
5^{4}=625=1 \bmod 12 .
$$

Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^{+}$such that

$$
m^{k}=1 \bmod p
$$

- Every residue $s \in \Phi(p)$ has an exponent.
$-1, s, s^{2}, s^{3}, \ldots$ eventually repeats itself modulo p, say $s^{i}=s^{j} \bmod p$, which means $s^{j-i}=1 \bmod p$.
- If the exponent of m is k and $m^{\ell}=1 \bmod p$, then $k \mid \ell$.
- Otherwise, $\ell=q k+a$ for $0<a<k$, and

$$
m^{\ell}=m^{q k+a}=m^{a}=1 \bmod p, \text { a contradiction. }
$$

Lemma 57 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p-1$.
- A primitive root of p is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)=\{1,2, \ldots, p-1\}$ that have exponent k.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- So

$$
\sum_{k \mid(p-1)} R(k)=p-1
$$

as every number has an exponent.

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies

$$
x^{k}=1 \bmod p
$$

- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 57 (p. 458).
- Let s be a residue of exponent k.
- $1, s, s^{2}, \ldots, s^{k-1}$ are distinct modulo p.
- Otherwise, $s^{i}=s^{j} \bmod p$ with $i<j$.
- Then $s^{j-i}=1 \bmod p$ with $j-i<k$, a contradiction.
- As all these k distinct numbers satisfy $x^{k}=1 \bmod p$, they comprise all the solutions of $x^{k}=1 \bmod p$.

Size of $R(k)$ (continued)

- But do all of them have exponent k (i.e., $R(k)=k)$?
- And if not (i.e., $R(k)<k$), how many of them do?
- Pick s^{ℓ}, where $\ell<k$.
- Suppose $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=\left(s^{k}\right)^{\ell / d}=1 \bmod p .
$$

- Therefore, s^{ℓ} has exponent at most $k / d<k$.
- We conclude that

$$
R(k) \leq \phi(k) .
$$

Size of $R(k)$ (concluded)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 54 (p. 445).

- Hence

$$
R(k)=\left\{\begin{array}{cl}
\phi(k) & \text { when } k \mid(p-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

- In particular, $R(p-1)=\phi(p-1)>0$, and p has at least one primitive root.
- This proves one direction of Theorem 49 (p. 431).

A Few Calculations

- Let $p=13$.
- From p. 455, we know $\phi(p-1)=4$.
- Hence $R(12)=4$.
- Indeed, there are 4 primitive roots of p.
- As

$$
\Phi(p-1)=\{1,5,7,11\},
$$

the primitive roots are

$$
g^{1}, g^{5}, g^{7}, g^{11}
$$

for any primitive root g.

The Other Direction of Theorem 49 (p. 431)

- We show p is a prime if there is a number r such that 1. $r^{p-1}=1 \bmod p$, and

2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1}=1 \bmod p($ note $\operatorname{gcd}(r, p)=1)$.
- We will show that the 2 nd condition must be violated.

The Proof (continued)

- So we proceed to show $r^{(p-1) / q}=1 \bmod p$ for some prime divisor q of $p-1$.
- $r^{\phi(p)}=1 \bmod p$ by the Fermat-Euler theorem (p. 455).
- Because p is not a prime, $\phi(p)<p-1$.
- Let k be the smallest integer such that $r^{k}=1 \bmod p$.
- With the 1st condition, it is easy to show that $k \mid(p-1)$ (similar to p. 458).
- Note that $k \mid \phi(p)$ (p. 458).
- As $k \leq \phi(p), k<p-1$.

The Proof (concluded)

- Let q be a prime divisor of $(p-1) / k>1$.
- Then $k \mid(p-1) / q$.
- By the definition of k,

$$
r^{(p-1) / q}=1 \bmod p
$$

- But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then SAT is in P.
- If you can find the best TSP tour efficiently, then TSP (D) is in P .
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if $\operatorname{sat} \in \mathrm{P}$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FsAt Using sat

```
\(t:=\epsilon\); \{Truth assignment.\}
if \(\phi \in\) SAT then
for \(i=1,2, \ldots, n\) do
if \(\phi\left[x_{i}=\right.\) true \(] \in \operatorname{SAT}\) then
\(t:=t \cup\left\{x_{i}=\right.\) true \(\} ;\)
\(\phi:=\phi\left[x_{i}=\right.\) true \(] ;\)
        else
            \(t:=t \cup\left\{x_{i}=\right.\) false \(\} ;\)
            \(\phi:=\phi\left[x_{i}=\mathrm{false}\right] ;\)
            end if
        end for
        return \(t\);
    else
        return "no";
        end if
```


Analysis

- If SAT can be solved in polynomial time, so can FSAT.
- There are $\leq n+1$ calls to the algorithm for SAT. ${ }^{\text {a }}$
- Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence sat and fsat are equally hard (or easy).
- Note that this reduction from fSAT to SAT is not a Karp reduction (recall p. 247).
- Instead, it calls sat multiple times as a subroutine and moves on SAT's outputs.

[^6]
TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
- The shortest total distance is at most $\sum_{i, j} d_{i j}$.
* Recall that the input string contains $d_{11}, \ldots, d_{n n}$.
* Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(\mathrm{D}) \in \mathrm{P}$, then tSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

1: Perform a binary search over interval [$0,2^{|x|}$] by calling TSP (D) to obtain the shortest distance, C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TSP (D) with $B=C$ and $d_{i j}=C+1$;
4: if "no" then
5: \quad Restore $d_{i j}$ to old value; \{Edge $[i, j]$ is critical. $\}$
6: end if
7: end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its $d_{i j}$ set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- This is true even if there are multiple optimal tours! ${ }^{\text {a }}$
${ }^{\text {a }}$ Thanks to a lively class discussion on November 12, 2013.

Analysis (concluded)

- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- Each call has an input length of $O(|x|)$.
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Randomized Computation

I know that half my advertising works, I just don't know which half. - John Wanamaker

I know that half my advertising is
a waste of money, I just don't know which half!

- McGraw-Hill ad.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary.
- Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithm for maximal independent set. ${ }^{\text {b }}$

[^7]
"Four Most Important Randomized Algorithms" a

1. Primality testing. ${ }^{\text {b }}$
2. Graph connectivity using random walks. ${ }^{\text {c }}$
3. Polynomial identity testing. ${ }^{\text {d }}$
4. Algorithms for approximate counting. ${ }^{\text {e }}$
${ }^{\text {a }}$ Trevisan (2006).
${ }^{\mathrm{b}}$ Rabin (1976); Solovay and Strassen (1977).
${ }^{c}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
${ }^{\text {d }}$ Schwartz (1980); Zippel (1979).
${ }^{\mathrm{e}}$ Sinclair and Jerrum (1989).

[^0]: ${ }^{a}$ Why?

[^1]: ${ }^{\text {a }}$ Thanks to a lively discussion on April 24, 2008.

[^2]: ${ }^{\mathrm{a}}$ Carl Friedrich Gauss.

[^3]: ${ }^{\text {a }}$ Leonhard Euler (1707-1783).
 ${ }^{\mathrm{b}} Z_{n}^{*}$ is an alternative notation.

[^4]: ${ }^{\text {a }}$ Consult any textbook on discrete mathematics.

[^5]: ${ }^{\text {a }}$ Pierre de Fermat (1601-1665).

[^6]: ${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

[^7]: ${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977).
 b"Maximal" (a local maximum) not "maximum" (a global maximum).

