MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

max bisection Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- G^{\prime} 's goal K is identical to G 's
- As the new nodes have no edges, they contribute nothing to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like MAX BISECTION except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, Bisection width is NP-complete.
- We reduce max bisection to bisection width.
- Given a graph $G=(V, E)$, where $|V|$ is even, we generate the complement of G.
- Given a goal of K, we generate a goal of $n^{2}-K$. ${ }^{\text {a }}$

$$
{ }^{\mathrm{a}}|V|=2 n .
$$

The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

hamiltonian path Is NP-Complete ${ }^{\text {a }}$

Theorem 42 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

[^0]A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 43 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as from G follows.
- Set $d_{i j}=1$ on G^{\prime} if $[i, j] \in G$ and $d_{i j}=2$ on G^{\prime} if $[i, j] \notin G$.
- Note that G^{\prime} is a complete graph.
- Set the budget $B=n+1$.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G^{\prime} has a tour of distance at most $n+1 .{ }^{\text {a }}$
- Then that tour on G^{\prime} must contain at most one edge with weight 2.
- If a tour on G^{\prime} contains 1 edge with weight 2 , remove that edge to arrive at a Hamiltonian path for G.
- Suppose, on the other hand, a tour on G^{\prime} contains no edge with weight 2.
- Then remove any edge to arrive at a Hamiltonian path for G.

[^1]

TSP (D) Is NP-Complete (concluded)

- On the other hand, suppose G has a Hamiltonian path.
- Then there is a tour on G^{\prime} containing at most one edge with weight 2 .
- Start with a Hamiltonian path and then close the loop.
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Random TSP

- Suppose each distance $d_{i j}$ is picked uniformly and independently from the interval $[0,1]$.
- It is known that the total distance of the shortest tour has a mean value of $\beta \sqrt{n}$ for some positive β.
- In fact, the total distance of the shortest tour can be away from the mean by more than t with probability at most $e^{-t^{2} /(4 n)!}{ }^{\text {a }}$

[^2]
Graph Coloring

- k-COLORING: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color? ${ }^{\text {a }}$
- 2-coloring is in P (why?).
- But 3-coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).
- EXACT- k-COLORING asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).
${ }^{\mathrm{a}} k$ is not part of the input; k is part of the problem statement.

3-Coloring Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-Coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G that can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^3]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right]
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}. ${ }^{\text {a }}$

[^4]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We are dealing with those triangles with the " a " node, not the clause triangles yet.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.

[^5]
The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We are dealing with those triangles with the " a " node, not the clause triangles.

The Proof (continued)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2 .

The Proof (concluded)

- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Algorithms for 3-COLORING and the Chromatic Number $\chi(G)$

- Assume G is 3 -colorable.
- There is an algorithm to find a 3 -coloring in time $O\left(3^{n / 3}\right)=1.4422^{n}$.
- It has been improved to $O\left(1.3289^{n}\right)$. ${ }^{\text {b }}$
${ }^{\text {a }}$ Lawler (1976).
${ }^{\mathrm{b}}$ Beigel and Eppstein (2000).

Algorithms for 3-coloring and the Chromatic Number $\chi(G)$ (concluded)

- The chromatic number $\chi(G)$ is the smallest number of colors needed to color a graph G.
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n}$. ${ }^{\text {a }}$
- It can be improved to $O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right)^{\text {b }}$ and $2^{n} n^{O(1)}$. .
- Computing $\chi(G)$ cannot be easier than 3-coloring. ${ }^{\text {d }}$

[^6]
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- tripartite matching asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 44 (Karp (1972)) tripartite matching is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SEt PACKING asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint (so have U as their union).

Related Problems (concluded)

Corollary 45 (Karp (1972)) SET COVERING, SET

packing, and exact cover by 3-sets are all NP-complete.

- Set covering can be used to prove that the influence maximization problem in social networks is NP-complete. ${ }^{\text {a }}$
${ }^{\text {a }}$ Kempe, Kleinberg, and Tardos (2003).

The knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- knapsack asks if there exists a subset

$$
S \subseteq\{1,2, \ldots, n\}
$$

such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$.

- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete ${ }^{\text {a }}$

- KNAPSACK \in NP: Guess an S and check the constraints.
- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK, in which $v_{i}=w_{i}$ for all i and $K=W$.
- The simplified KNAPSACK now asks if a subset of $v_{1}, v_{2}, \ldots, v_{n}$ adds up to exactly $K .{ }^{\text {b }}$
- Picture yourself as a radio DJ.
${ }^{\text {a }}$ Karp (1972).
${ }^{\mathrm{b}}$ This problem is called SUBSET SUM.

The Proof (continued)

- The primary differences between the two problems are: ${ }^{\text {a }}$
- Sets vs. numbers.
- Union vs. addition.
- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- exact cover by 3 -Sets asks if there are m disjoint sets in F that cover the set U.
${ }^{\text {a }}$ Thanks to a lively class discussion on November 16, 2010.

The Proof (continued)

- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 110010000 means the set $\{1,2,5\}$.
- 001100010 means the set $\{3,4,8\}$.
- Our goal is

The Proof (continued)

- A bit vector can also be seen as a binary number.
- Set union resembles addition:

001100010

$$
+\quad 110010000
$$

111110010
which denotes the set $\{1,2,3,4,5,8\}$, as desired.

The Proof (continued)

- Trouble occurs when there is carry:

010000000
$+\quad 010000000$
100000000

which denotes the set $\{1\}$, not the desired $\{2\}$.

The Proof (continued)

- Or consider

001100010
$+\quad 001110000$
011010010

which denotes the set $\{2,3,5,8\}$, not the desired $\{3,4,5,8\}$. ${ }^{\text {a }}$
${ }^{\text {a }}$ Corrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
- For example,

000100010
001110000
101100000
$+\quad 000001101$
111111111

- But the correct answer, $\{1,3,4,5,6,7,8,9\}$, is not an exact cover.

The Proof (continued)

- And it uses 4 sets instead of the required $m=3 .{ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries. ${ }^{\text {b }}$
- Because there are n vectors in total, we change the base from 2 to $n+1$.

[^7]${ }^{\mathrm{b}}$ You cannot map \cup to \vee because KNAPSACK requires + .

The Proof (continued)

- Set v_{i} to be the integer corresponding to the bit vector encoding S_{i} in base $n+1$:

$$
\begin{equation*}
v_{i}=\sum_{j \in S_{i}}(n+1)^{3 m-j} \tag{3}
\end{equation*}
$$

- Now in base $n+1$, if there is a set S such that $3 m$
$\sum_{i \in S} v_{i}=\overbrace{11 \cdots 1}$, then every position must be contributed by exactly one v_{i} and $|S|=m$.
- Finally, set

$$
K=\sum_{j=0}^{3 m-1}(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1) .
$$

The Proof (continued)

- For example, the case on p. 399 becomes

000100010
001110000
101100000
$+000001101$
102311111
in base 6 .

- It does not meet the goal.

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $S=\{1,2, \ldots, m\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m} .
$$

- It is important to note that the meaning of addition $(+)$ is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.
- But an S_{i} may give rise to different integer v_{i} 's in Eq. (3) on p. 401 under different bases.

[^8]
The Proof (concluded)

- On the other hand, suppose there exists an S such that

$$
\sum_{i \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}
$$

in base $n+1$.

- The no-carry property implies that $|S|=m$ and

$$
\left\{S_{i}: i \in S\right\}
$$

is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
& S_{1}=\{1,3,4\}, \\
& S_{2}=\{2,3,4\}, \\
& S_{3}=\{2,5,6\}, \\
& S_{4}=\{6,7,8\}, \\
& S_{5}=\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (continued)

- Our reduction produces

$$
\begin{aligned}
& K=\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1}^{3 \times 3} \quad(\text { base } 6)=2015539 \\
& v_{1}=101100000=1734048 \\
& v_{2}=011100000=334368 \\
& v_{3}=010011000=281448 \\
& v_{4}=000001110=258 \\
& v_{5}=000000111=43
\end{aligned}
$$

An Example (concluded)

- Note $v_{1}+v_{3}+v_{5}=K$ because

101100000
010011000
$+\quad 000000111$
111111111

- Indeed,

$$
S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\},
$$

an exact cover by 3 -sets.

BIN PACKING

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING is NP-complete.

BIN PACKING (concluded)

- But suppose $a_{1}, a_{2}, \ldots, a_{N}$ are randomly distributed between 0 and 1 .
- Let B be the smallest number of unit-capacity bins capable of holding them.
- Then B can differ from its average by more than t with probability at most $2 e^{-2 t^{2} / N}$.a
${ }^{a}$ Dubhashi and Panconesi (2012).

INTEGER PROGRAMMING

- INTEGER PROGRAMmING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete ${ }^{\text {a }}$

- SET COVERING can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
$-x_{i}$ is one if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots
$-\overrightarrow{1}$ is the vector of 1 s .
- The operations in $A x$ are standard matrix operations.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

[^9]
Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances or special cases.
- The independent set proof (p. 341) and the KNAPSACK proof (p. 393).
- SAT to 2SAT (easier by p. 322).
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 294).

[^10]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions (the solution space) may make a problem harder, equally hard, or easier.
- It is problem dependent.
- min cut to bisection width (harder by p. 368).
- LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 410).
- SAT to naEsAT (equally hard by p. 335) and max CUT to MAX BISECTION (equally hard by p. 366).
- 3-COLORING to 2 -COLORING (easier by p. 377).

coNP and Function Problems

coNP

- NP is the class of problems that have succinct certificates (recall Proposition 35 on p. 306).
- By definition, coNP is the class of problems whose complement is in NP.
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.
- Note that if we swap "yes" and "no" of M, the new algorithm M^{\prime} decides $\bar{L} \in$ NP in the classic sense (p. 94).

coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 11 on p. 153).

Some coNP Problems

- VALIDITY \in coNP.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
- SAT COMPLEMENT is the complement of SAT.
- The disqualification is a truth assignment that satisfies it.
- hamiltonian path complement \in coNP.
- The disqualification is a Hamiltonian path.

Some coNP Problems (concluded)

- optimal TSP $(\mathrm{D}) \in \mathrm{coNP}$.
- optimal TSP (D) asks if the optimal tour has a total distance of B, where B is an input. ${ }^{\text {a }}$
- The disqualification is a tour with a length $<B$.

[^11]A Nondeterministic Algorithm for SAT COMPLEMENT
ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "no";
7: else
8: "yes";
9: end if

Analysis

- The algorithm decides language $\{\phi: \phi$ is unsatisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is unsatisfiable iff every truth assignment falsifies ϕ.
- But every truth assignment falsifies ϕ iff every computation path results in "yes."

An Alternative Characterization of coNP

Proposition 47 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in c o N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 305, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x: \exists y(x, y) \in \neg R\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 35 (p. 306).
- Hence $L \in$ coNP by definition.

coNP-Completeness

Proposition $48 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.
Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}^{\prime} be any coNP language.
- Hence $L^{\prime} \in \mathrm{NP}$.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- Equivalently, $x \notin L^{\prime}$ if and only if $R(x) \notin L$ (the law of transposition).

coNP Completeness (concluded)

- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}^{\prime} to \bar{L}.
- This shows \bar{L} is coNP-hard.
- But $\bar{L} \in \mathrm{coNP}$.
- This shows \bar{L} is coNP-complete.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
- The reduction from sat complement to validity is hence easy.
- hamiltonian path complement is coNP-complete.

Possible Relations between P, NP, coNP

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.
2. $\mathrm{NP}=\mathrm{coNP}$ but $\mathrm{P} \neq \mathrm{NP}$.
3. NP $\neq \mathrm{coNP}$ and $\mathrm{P} \neq \mathrm{NP}$.

- This is the current "consensus." ${ }^{\text {a }}$
${ }^{\text {a }}$ Carl Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

[^0]: ${ }^{a}$ Karp (1972).

[^1]: ${ }^{\mathrm{a}} \mathrm{A}$ tour is a cycle, not a path.

[^2]: ${ }^{a}$ Dubhashi and Panconesi (2012).

[^3]: ${ }^{a}$ Karp (1972).

[^4]: ${ }^{\text {a }}$ Alternative proof: There is an edge between $\neg c_{i j}$ and the node that represents the j th literal of C_{i}. Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^5]: ${ }^{\text {a }}$ The opposite also works.

[^6]: ${ }^{\text {a }}$ Lawler (1976).
 ${ }^{\text {b }}$ Eppstein (2003).
 ${ }^{\text {c }}$ Koivisto (2006).
 ${ }^{\mathrm{d}}$ Contributed by Mr. Ching-Hua Yu (D00921025) on October 30, 2012.

[^7]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.

[^8]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

[^9]: ${ }^{\mathrm{a}}$ Karp (1972).

[^10]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 29, 2003.

[^11]: ${ }^{\text {a }}$ Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

