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(h1 ⇔ x1) ∧ (h2 ⇔ x2) ∧ (h3 ⇔ x3) ∧ (h4 ⇔ x4)

∧ [ g1 ⇔ (h1 ∧ h2) ] ∧ [ g2 ⇔ (h3 ∨ h4) ]

∧ [ g3 ⇔ (g1 ∧ g2) ] ∧ (g4 ⇔ ¬g2)
∧ [ g5 ⇔ (g3 ∨ g4) ] ∧ g5.
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An Example (concluded)

• In general, the result is a CNF.

• The CNF has size proportional to the circuit’s number

of gates.

• The CNF adds new variables to the circuit’s original

input variables.

• Had we used the idea on p. 192 for the reduction, the

resulting formula may have an exponential length

because of the copying.a

aContributed by Mr. Ching-Hua Yu (D00921025) on October 16, 2012.
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Composition of Reductions

Proposition 26 If R12 is a reduction from L1 to L2 and

R23 is a reduction from L2 to L3, then the composition

R12 ◦R23 is a reduction from L1 to L3.

• So reducibility is transitive.
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Completenessa

• As reducibility is transitive, problems can be ordered

with respect to their difficulty.

• Is there a maximal element (the hardest problem)?

• It is not obvious that there should be a maximal

element.

– Many infinite structures (such as integers and real

numbers) do not have maximal elements.

• Hence it may surprise you that most of the complexity

classes that we have seen so far have maximal elements.

aCook (1971) and Levin (1973).
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Completeness (concluded)

• Let C be a complexity class and L ∈ C.

• L is C-complete if every L′ ∈ C can be reduced to L.

– Most complexity classes we have seen so far have

complete problems!

• Complete problems capture the difficulty of a class

because they are the hardest problems in the class.
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Hardness

• Let C be a complexity class.

• L is C-hard if every L′ ∈ C can be reduced to L.

• It is not required that L ∈ C.

• If L is C-hard, then by definition, every C-complete

problem can be reduced to L.a

aContributed by Mr. Ming-Feng Tsai (D92922003) on October 15,

2003.
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Illustration of Completeness and Hardness
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Closedness under Reductions

• A class C is closed under reductions if whenever L is

reducible to L′ and L′ ∈ C, then L ∈ C.

• It is easy to show that P, NP, coNP, L, NL, PSPACE,

and EXP are all closed under reductions.
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Complete Problems and Complexity Classes

Proposition 27 Let C′ and C be two complexity classes

such that C′ ⊆ C. Assume C′ is closed under reductions and

L is C-complete. Then C = C′ if and only if L ∈ C′.

• Suppose L ∈ C′ first.

• Every language A ∈ C reduces to L ∈ C′.

• Because C′ is closed under reductions, A ∈ C′.

• Hence C ⊆ C′.

• As C′ ⊆ C, we conclude that C = C′.
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The Proof (concluded)

• On the other hand, suppose C = C′.

• As L is C-complete, L ∈ C.

• Thus, trivially, L ∈ C′.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 273



Two Important Corollaries

Proposition 27 implies the following.

Corollary 28 P = NP if and only if an NP-complete

problem in P.

Corollary 29 L = P if and only if a P-complete problem is

in L.
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Complete Problems and Complexity Classes

Proposition 30 Let C′ and C be two complexity classes

closed under reductions. If L is complete for both C and C′,

then C = C′.

• All languages L ∈ C reduce to L ∈ C and L ∈ C′.

• Since C′ is closed under reductions, L ∈ C′.

• Hence C ⊆ C′.

• The proof for C′ ⊆ C is symmetric.
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Table of Computation

• Let M = (K,Σ, δ, s) be a single-string polynomial-time

deterministic TM deciding L.

• Its computation on input x can be thought of as a

|x |k × |x |k table, where |x |k is the time bound.

– It is essentially a sequence of configurations.

• Rows correspond to time steps 0 to |x |k − 1.

• Columns are positions in the string of M .

• The (i, j)th table entry represents the contents of

position j of the string after i steps of computation.
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Some Conventions To Simplify the Table

• M halts after at most |x |k − 2 steps.

• Assume a large enough k to make it true for |x | ≥ 2.

• Pad the table with
⊔
s so that each row has length |x |k.

– The computation will never reach the right end of

the table for lack of time.

• If the cursor scans the jth position at time i when M is

at state q and the symbol is σ, then the (i, j)th entry is

a new symbol σq.
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Some Conventions To Simplify the Table (continued)

• If q is “yes” or “no,” simply use “yes” or “no” instead of

σq.

• Modify M so that the cursor starts not at � but at the

first symbol of the input.

• The cursor never visits the leftmost � by telescoping

two moves of M each time the cursor is about to move

to the leftmost �.

• So the first symbol in every row is a � and not a �q.
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Some Conventions To Simplify the Table (concluded)

• Suppose M has halted before its time bound of |x |k, so
that “yes” or “no” appears at a row before the last.

• Then all subsequent rows will be identical to that row.

• M accepts x if and only if the (|x |k − 1, j)th entry is

“yes” for some position j.
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Comments

• Each row is essentially a configuration.

• If the input x = 010001, then the first row is

| x |k︷ ︸︸ ︷
�0s10001

⊔⊔
· · ·

⊔
• A typical row may look like

| x |k︷ ︸︸ ︷
�10100q01110100

⊔⊔
· · ·

⊔
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Comments (concluded)

• The last rows must look like

| x |k︷ ︸︸ ︷
� · · · “yes” · · ·

⊔
or

|x |k︷ ︸︸ ︷
� · · · “no” · · ·

⊔
• Three out of the table’s 4 borders are known:

#��D��E��F��G��H��I���#

#

�

�
# �# �

...
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A P-Complete Problem

Theorem 31 (Ladner (1975)) circuit value is

P-complete.

• It is easy to see that circuit value ∈ P.

• For any L ∈ P, we will construct a reduction R from L

to circuit value.

• Given any input x, R(x) is a variable-free circuit such

that x ∈ L if and only if R(x) evaluates to true.

• Let M decide L in time nk.

• Let T be the computation table of M on x.
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The Proof (continued)

• When i = 0, or j = 0, or j = |x |k − 1, then the value of

Tij is known.

– The jth symbol of x or
⊔
, a �, and a

⊔
, respectively.

– Recall that three out of T ’s 4 borders are known.
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The Proof (continued)

• Consider other entries Tij .

• Tij depends on only Ti−1,j−1, Ti−1,j , and Ti−1,j+1:
a

Ti−1,j−1 Ti−1,j Ti−1,j+1

Tij

• Let Γ denote the set of all symbols that can appear on

the table: Γ = Σ ∪ {σq : σ ∈ Σ, q ∈ K}.

• Encode each symbol of Γ as an m-bit number, whereb

m = ⌈log2 |Γ |⌉.

aThe dependency is “local.”
bCalled state assignment in circuit design.
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The Proof (continued)

• Let the m-bit binary string Sij1Sij2 · · ·Sijm encode Tij .

• We may treat them interchangeably without ambiguity.

• The computation table is now a table of binary entries

Sijℓ, where

0 ≤ i ≤ nk − 1,

0 ≤ j ≤ nk − 1,

1 ≤ ℓ ≤ m.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 285



The Proof (continued)

• Each bit Sijℓ depends on only 3m other bits:

Ti−1,j−1: Si−1,j−1,1 Si−1,j−1,2 · · · Si−1,j−1,m

Ti−1,j : Si−1,j,1 Si−1,j,2 · · · Si−1,j,m

Ti−1,j+1: Si−1,j+1,1 Si−1,j+1,2 · · · Si−1,j+1,m

• So truth values for the 3m bits determine Sijℓ.
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The Proof (continued)

• This means there is a boolean function Fℓ with 3m

inputs such that

Sijℓ

= Fℓ(

Ti−1,j−1︷ ︸︸ ︷
Si−1,j−1,1, Si−1,j−1,2, . . . , Si−1,j−1,m,

Ti−1,j︷ ︸︸ ︷
Si−1,j,1, Si−1,j,2, . . . , Si−1,j,m,

Ti−1,j+1︷ ︸︸ ︷
Si−1,j+1,1, Si−1,j+1,2, . . . , Si−1,j+1,m),

where for all i, j > 0 and 1 ≤ ℓ ≤ m.
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The Proof (continued)

• These Fℓ’s depend only on M ’s specification, not on x.

• Their sizes are constant.

• These boolean functions can be turned into boolean

circuits (see p. 191).

• Compose these m circuits in parallel to obtain circuit C

with 3m-bit inputs and m-bit outputs.

– Schematically, C(Ti−1,j−1, Ti−1,j , Ti−1,j+1) = Tij .
a

aC is like an ASIC (application-specific IC) chip.
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The Proof (concluded)

• A copy of circuit C is placed at each entry of the table.

– Exceptions are the top row and the two extreme

column borders.

• R(x) consists of (|x |k − 1)(|x |k − 2) copies of circuit C.

• Without loss of generality, assume the output

“yes”/“no” appear at position (|x |k − 1, 1).

• Encode “yes” as 1 and “no” as 0.
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The Computation Tableau and R(x)
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A Corollary

The construction in the above proof yields the following,

more general result.

Corollary 32 If L ∈ TIME(T (n)), then a circuit with

O(T 2(n)) gates can decide if x ∈ L for |x | = n.
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monotone circuit value

• A monotone boolean circuit’s output cannot change

from true to false when one input changes from false to

true.

• Monotone boolean circuits are hence less expressive than

general circuits.

– They can compute only monotone boolean functions.

• Monotone circuits do not contain ¬ gates (prove it).

• monotone circuit value is circuit value applied

to monotone circuits.
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monotone circuit value Is P-Complete

Despite their limitations, monotone circuit value is as

hard as circuit value.

Corollary 33 monotone circuit value is P-complete.

• Given any general circuit, “move the ¬’s downwards”
using de Morgan’s lawsa to yield a monotone circuit

with the same output.

aHow? Need to make sure no exponential blowup.
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Cook’s Theorem: the First NP-Complete Problem

Theorem 34 (Cook (1971)) sat is NP-complete.

• sat ∈ NP (p. 104).

• circuit sat reduces to sat (p. 261).

• Now we only need to show that all languages in NP can

be reduced to circuit sat.a

aAs a bonus, this also shows circuit sat is NP-complete.
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The Proof (continued)

• Let single-string NTM M decide L ∈ NP in time nk.

• Assume M has exactly two nondeterministic choices at

each step: choices 0 and 1.

• For each input x, we construct circuit R(x) such that

x ∈ L if and only if R(x) is satisfiable.

• Equivalently, for each input x, M(x) = “yes” for some

computation path if and only if R(x) is satisfiable.

• How to come up with a polynomial-sized R(x) when

there are exponentially many computation paths?
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The Proof (continued)

• A straightforward proof is to construct a variable-free

circuit Ri(x) for the ith computation path.a

• Then add a small circuit to output 1 if and only if there

is an Ri(x) that outputs a “yes.”

• Clearly, the resulting circuit outputs 1 if and only if M

accepts x.

• But, it is too large because there are exponentially many

computation paths.

aThe circuit for Theorem 31 (p. 282) will do.
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The Proof (continued)

• A sequence of nondeterministic choices is a bit string

B = (c1, c2, . . . , c| x |k−1) ∈ {0, 1}|x |k−1.

• Once B is given, the computation is deterministic.

• Each choice of B results in a deterministic

polynomial-time computation.

• Each circuit C at time i has an extra binary input c

corresponding to the nondeterministic choice:

C(Ti−1,j−1, Ti−1,j , Ti−1,j+1, c) = Tij .
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The Computation Tableau for NTMs and R(x)
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The Proof (concluded)

• Note that c1, c2, . . . , c|x |k−1 constitute the variables of

R(x).

• The overall circuit R(x) (on p. 300) is satisfiable if and

only if there is a truth assignment B such that the

computation table accepts.

• This happens if and only if M accepts x, i.e., x ∈ L.
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Stephen Arthur Cooka (1939–)

Richard Karp, “It is to our

everlasting shame that we

were unable to persuade

the math department [of

UC-Berkeley] to give him

tenure.”

aTuring Award (1982). See http://conservancy.umn.edu/handle/107226

for an interview in 2002.
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NP-Complete Problems

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 303



Wir müssen wissen, wir werden wissen.

(We must know, we shall know.)

— David Hilbert (1900)

I predict that scientists will one day adopt a new

principle: “NP-complete problems are hard.”

That is, solving those problems efficiently is

impossible on any device that could be built

in the real world, whatever the final laws

of physics turn out to be.

— Scott Aaronson (2008)
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Two Notions

• Let R ⊆ Σ∗ × Σ∗ be a binary relation on strings.

• R is called polynomially decidable if

{x; y : (x, y) ∈ R}

is in P.

• R is said to be polynomially balanced if (x, y) ∈ R

implies |y| ≤ |x |k for some k ≥ 1.
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An Alternative Characterization of NP

Proposition 35 (Edmonds (1965)) Let L ⊆ Σ∗ be a

language. Then L ∈ NP if and only if there is a polynomially

decidable and polynomially balanced relation R such that

L = {x : ∃y (x, y) ∈ R}.

• Suppose such an R exists.

• L can be decided by this NTM:

– On input x, the NTM guesses a y of length ≤ |x |k.
– It then tests if (x, y) ∈ R in polynomial time.

– It returns “yes” if the test is positive.
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The Proof (concluded)

• Now suppose L ∈ NP.

• NTM N decides L in time |x |k.

• Define R as follows: (x, y) ∈ R if and only if y is the

encoding of an accepting computation of N on input x.

• R is polynomially balanced as N is polynomially

bounded.

• R is polynomially decidable because it can be efficiently

verified by consulting N ’s transition function.

• Finally L = {x : (x, y) ∈ R for some y} because N

decides L.
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Jack Edmonds (1934–)
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Comments

• Any “yes” instance x of an NP problem has at least one

succinct certificate or polynomial witness y.

• “No” instances have none.

• Certificates are short and easy to verify.

– An alleged satisfying truth assignment for sat, an

alleged Hamiltonian path for hamiltonian path,

etc.

• Certificates may be hard to generate,a but verification

must be easy.

• NP is the class of easy-to-verify (i.e., in P) problems.

aUnless P equals NP.
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Levin Reduction

• The reduction R in Cook’s theorem (p. 295) is such that

– Each satisfying truth assignment for circuit R(x)

corresponds to an accepting computation path for

M(x).

• It actually yields an efficient way to transform a

certificate for x to a satisfying assignment for R(x), and

vice versa.

• A reduction with this property is called a Levin

reduction.a

aLevin is the co-inventor of NP-completeness, in 1973.
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Leonid Levin (1948–)

Leonid Levin (1998), “Mathemati-

cians often think that historical evi-

dence is that NP is exponential. His-

torical evidence is quite strongly in

the other direction.”
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