Theory of Computation

Homework 1

Due: 2013/10/01
Problem 1 Please describe the workings of the following two Turing machines:
a. Let M be the Turing machine $M=(K, \Sigma, \delta, s)$, where $K=\{s, h\}$

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s	\triangleright	$(s, \triangleright, \rightarrow)$
s	1	$(s, 0, \rightarrow)$
s	0	$(s, 1, \rightarrow)$
s	\sqcup	$(h, \sqcup,-)$

b. Let M be the Turing machine $M=(K, \Sigma, \delta, s)$, where $K=\left\{s_{0}, s_{1}, h\right\}$

$p \in K$	$\sigma \in \Sigma$	$\delta(p, \sigma)$
s_{0}	\triangleright	$\left(s_{0}, \triangleright, \rightarrow\right)$
s_{0}	1	$\left(s_{1}, 1, \rightarrow\right)$
s_{0}	0	$\left(s_{0}, 0, \rightarrow\right)$
s_{1}	0	$\left(s_{0}, 0, \rightarrow\right)$
s_{1}	1	$(h, 1,-)$
s_{0}	\sqcup	$(h, \sqcup,-)$
s_{1}	\sqcup	$(h, \sqcup,-)$

Problem 2 Show that if a language is recursively enumerable, then there is a Turing machine that enumerates it (i.e., to output its members) without ever repeating an element of the language. Recall that in the original definition of enumeration on p .41 of the slides, we do not require that every member is printed only once.

