
Boolean Logic

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 162

It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · ·]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 163

Boolean Logica

Boolean variables: x1, x2,

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬ϕ (negation),

ϕ1 ∨ ϕ2 (disjunction), ϕ1 ∧ ϕ2 (conjunction).

•
∨n

i=1 ϕi stands for ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn.

•
∧n

i=1 ϕi stands for ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn.

Implications: ϕ1 ⇒ ϕ2 is a shorthand for ¬ϕ1 ∨ ϕ2.

Biconditionals: ϕ1 ⇔ ϕ2 is a shorthand for

(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

aGeorge Boole (1815–1864) in 1847.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 164

Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression ϕ if it defines the truth value for every

variable in ϕ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false} is not appropriate to

x1 ∨ x2.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 165

Satisfaction

• T |= ϕ means boolean expression ϕ is true under T ; in

other words, T satisfies ϕ.

• ϕ1 and ϕ2 are equivalent, written

ϕ1 ≡ ϕ2,

if for any truth assignment T appropriate to both of

them, T |= ϕ1 if and only if T |= ϕ2.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 166

Truth Tables

• Suppose ϕ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of ϕ under that

truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 167

A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 168

A Second Truth Table

p q p ∨ q

0 0 0

0 1 1

1 0 1

1 1 1

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 169

A Third Truth Table

p ¬p

0 1

1 0

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 170

De Morgan’s Lawsa

• De Morgan’s laws say that

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2,

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2.

• Here is a proof of the first law:

ϕ1 ϕ2 ¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 171

Conjunctive Normal Forms

• A boolean expression ϕ is in conjunctive normal

form (CNF) if

ϕ =

n∧
i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 172

Disjunctive Normal Forms

• A boolean expression ϕ is in disjunctive normal form

(DNF) if

ϕ =
n∨

i=1

Di,

where each implicant Di is the conjunction of zero or

more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 173

Clauses and Implicants

• The
∨

of clauses remains a clause.

– For example,

(x1 ∨ x2) ∨ (x1 ∨ ¬x2) ∨ (x2 ∨ x3)

= x1 ∨ x2 ∨ x1 ∨ ¬x2 ∨ x2 ∨ x3.

• The
∧

of implicants remains a implicant.

– For example,

(x1 ∧ x2) ∧ (x1 ∧ ¬x2) ∧ (x2 ∧ x3)

= x1 ∧ x2 ∧ x1 ∧ ¬x2 ∧ x2 ∧ x3.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 174

Any Expression ϕ Can Be Converted into CNFs and DNFs

ϕ = xj:

• This is trivially true.

ϕ = ¬ϕ1 and a CNF is sought:

• Turn ϕ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for ϕ.

ϕ = ¬ϕ1 and a DNF is sought:

• Turn ϕ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for ϕ.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 175

Any Expression ϕ Can Be Converted into CNFs and DNFs

(continued)

ϕ = ϕ1 ∨ ϕ2 and a DNF is sought:

• Make ϕ1 and ϕ2 DNFs.

ϕ = ϕ1 ∨ ϕ2 and a CNF is sought:

• Turn ϕ1 and ϕ2 into CNFs,a

ϕ1 =

n1∧
i=1

Ai, ϕ2 =

n2∧
j=1

Bj .

• Set

ϕ =

n1∧
i=1

n2∧
j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 176

Any Expression ϕ Can Be Converted into CNFs and DNFs

(concluded)

ϕ = ϕ1 ∧ ϕ2 and a CNF is sought:

• Make ϕ1 and ϕ2 CNFs.

ϕ = ϕ1 ∧ ϕ2 and a DNF is sought:

• Turn ϕ1 and ϕ2 into DNFs,

ϕ1 =

n1∨
i=1

Ai, ϕ2 =

n2∨
j=1

Bj .

• Set

ϕ =

n1∨
i=1

n2∨
j=1

(Ai ∧Bj).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 177

An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 178

Satisfiability

• A boolean expression ϕ is satisfiable if there is a truth

assignment T appropriate to it such that T |= ϕ.

• ϕ is valid or a tautology,a written |= ϕ, if T |= ϕ for all

T appropriate to ϕ.

• ϕ is unsatisfiable if and only if ϕ is false under all

appropriate truth assignments if and only if ¬ϕ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.” Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 179

Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922), “Whereof one

cannot speak, thereof one must be

silent.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 180

satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF ϕ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 104).

• A most important problem in settling the “P
?
= NP”

problem (p. 294).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 181

unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

ϕ, is it unsatisfiable?

• validity: Given a boolean expression ϕ, is it valid?

– ϕ is valid if and only if ¬ϕ is unsatisfiable.

– ϕ and ¬ϕ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the

truth table method.

• Can we do better?

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182

Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 183

Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22
n

such boolean functions.

– We can assign true or false to f for each of the 2n

truth assignments.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 184

Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 185

Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= ϕ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is called the minterm over

{x1, . . . , xn} for T .a

– The sizeb is ≤ n2n ≤ 22n.

aSimilar to programmable logic array.
bWe count only the literals here.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 186

Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 187

Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be

avoided (p. 194).

• The size of the truth table is also O(n2n).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 188

Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.

– There are n+ 5 sorts.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 189

Boolean Circuits (concluded)

• Gates with a sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by

infinitely many equivalent boolean circuits.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 190

Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 191

An Example

((x1 x2) (x3 x4)) (x3 x4))

x1 x2 x3 x4

• Circuits are more economical because of the possibility

of sharing.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 192

circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 193

Some Boolean Functions Need Exponential Circuitsa

Theorem 15 (Shannon (1949)) For any n ≥ 2, there is

an n-ary boolean function f such that no boolean circuits

with 2n/(2n) or fewer gates can compute it.

• There are 22
n

different n-ary boolean functions (p. 184).

• So it suffices to prove that the number of boolean

circuits with 2n/(2n) or fewer gates is less than 22
n

.

aCan be strengthened to “almost all boolean functions . . .”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 194

The Proof (concluded)

• There are at most ((n+ 5)×m2)m boolean circuits with

m or fewer gates (see next page).

• But ((n+ 5)×m2)m < 22
n

when m = 2n/(2n):

m log2((n+ 5)×m2)

= 2n

(
1−

log2
4n2

n+5

2n

)
< 2n

for n ≥ 2.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 195

m
 choices

n
+5 choices

m
choices

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 196

Claude Elwood Shannon (1916–2001)

Howard Gardner, “[Shannon’s mas-

ter’s thesis is] possibly the most im-

portant, and also the most famous,

master’s thesis of the century.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 197

Comments

• The lower bound 2n/(2n) is rather tight because an

upper bound is n2n (p. 186).

• The proof counted the number of circuits.

– Some circuits may not be valid at all.

– Different circuits may also compute the same

function.

• Both are fine because we only need an upper bound on

the number of circuits.

• We do not need to consider the outdoing edges because

they have been counted as incoming edges.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 198

Relations between Complexity Classes

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 199

It is, I own, not uncommon to be wrong in theory

and right in practice.

— Edmund Burke (1729–1797),

A Philosophical Enquiry into the Origin of Our

Ideas of the Sublime and Beautiful (1757)

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 200

Proper (Complexity) Functions

• We say that f : N → N is a proper (complexity)

function if the following hold:

– f is nondecreasing.

– There is a k-string TM Mf such that

Mf (x) = ⊓f(| x |) for any x.a

– Mf halts after O(|x |+ f(|x |)) steps.
– Mf uses O(f(|x |)) space besides its input x.

• Mf ’s behavior depends only on |x | not x’s contents.

• Mf ’s running time is bounded by f(n).

aThe textbook calls “⊓” the quasi-blank symbol. The use of Mf (x)

will become clear in Proposition 16 (p. 204).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 201

Examples of Proper Functions

• Most “reasonable” functions are proper: c, ⌈log n⌉,
polynomials of n, 2n,

√
n , n!, etc.

• If f and g are proper, then so are f + g, fg, and 2g.a

• Nonproper functions when serving as the time bounds

for complexity classes spoil “the theory building.”

– For example, TIME(f(n)) = TIME(2f(n)) for some

recursive function f (the gap theorem).b

• Only proper functions f will be used in TIME(f(n)),

SPACE(f(n)), NTIME(f(n)), and NSPACE(f(n)).

aFor f(g), we need to add f(n) ≥ n.
bTrakhtenbrot (1964); Borodin (1972).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 202

Precise Turing Machines

• A TM M is precise if there are functions f and g such

that for every n ∈ N, for every x of length n, and for

every computation path of M ,

– M halts after precisely f(n) steps, and

– All of its strings are of length precisely g(n) at

halting.

∗ Recall that if M is a TM with input and output,

we exclude the first and last strings.

• M can be deterministic or nondeterministic.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 203

Precise TMs Are General

Proposition 16 Suppose a TMa M decides L within time

(space) f(n), where f is proper. Then there is a precise TM

M ′ which decides L in time O(n+ f(n)) (space O(f(n)),

respectively).

• M ′ on input x first simulates the TM Mf associated

with the proper function f on x.

• Mf ’s output of length f(|x |) will serve as a “yardstick”

or an “alarm clock.”

• M ′(x) halts when and only when the alarm clock runs

out—even if M halts earlier.

aIt can be deterministic or nondeterministic.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 204

The Proof (continued)

• If f is a time bound:

– The simulation of each step of M on x is matched by

advancing the cursor on the “clock” string.

– M ′ stops at the moment the “clock” string is

exhausted—even if M(x) stops before that time.

– So it is precise.

– The time bound is therefore O(|x |+ f(|x |)).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 205

The Proof (concluded)

• If f is a space bound:

– M ′ simulates M on the quasi-blanks of Mf ’s output

string.

– As before, M ′ stops at the moment the “clock” string

is exhausted—even if M(x) stops before that time.

– So it is again precise.

– The total space, not counting the input string, is

O(f(n)).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 206

Important Complexity Classes

• We write expressions like nk to denote the union of all

complexity classes, one for each value of k.

• For example,

NTIME(nk) =
∪
j>0

NTIME(nj).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 207

Important Complexity Classes (concluded)

P = TIME(nk),

NP = NTIME(nk),

PSPACE = SPACE(nk),

NPSPACE = NSPACE(nk),

E = TIME(2kn),

EXP = TIME(2n
k

),

L = SPACE(logn),

NL = NSPACE(logn).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 208

Complements of Nondeterministic Classes

• R, RE, and coRE are distinct (p. 155).

– coRE contains the complements of languages in RE,

not the languages not in RE.

• Recall that the complement of L, denoted by L̄, is the

language Σ∗ − L.

– sat complement is the set of unsatisfiable boolean

expressions.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 209

The Co-Classes

• For any complexity class C, coC denotes the class

{L : L̄ ∈ C}.

• Clearly, if C is a deterministic time or space complexity

class, then C = coC.
– They are said to be closed under complement.

– A deterministic TM deciding L can be converted to

one that decides L̄ within the same time or space

bound by reversing the “yes” and “no” states

(p. 152).

• Whether nondeterministic classes for time are closed

under complement is not known (p. 96).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 210

Comments

• As

coC = {L : L̄ ∈ C},

L ∈ C if and only if L̄ ∈ coC.

• But it is not true that L ∈ C if and only if L ̸∈ coC.
– coC is not defined as C̄.

• For example, suppose C = {{2, 4, 6, 8, 10, . . .}}.

• Then coC = {{1, 3, 5, 7, 9, . . .}}.

• But C̄ = 2{1,2,3,...}
∗ − {{2, 4, 6, 8, 10, . . .}}.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 211

The Quantified Halting Problem

• Let f(n) ≥ n be proper.

• Define

Hf = {M ;x : M accepts input x

after at most f(|x |) steps},

where M is deterministic.

• Assume the input is binary.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 212

Hf ∈ TIME(f(n)3)

• For each input M ;x, we simulate M on x with an alarm

clock of length f(|x |).
– Use the single-string simulator (p. 72), the universal

TM (p. 137), and the linear speedup theorem (p. 81).

– Our simulator accepts M ;x if and only if M accepts

x before the alarm clock runs out.

• From p. 79, the total running time is O(ℓMk2Mf(n)2),

where ℓM is the length to encode each symbol or state of

M and kM is M ’s number of strings.

• As ℓMk2M = O(n), the running time is O(f(n)3), where

the constant is independent of M .

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 213

Hf ̸∈ TIME(f(⌊n/2⌋))
• Suppose TM MHf

decides Hf in time f(⌊n/2⌋).

• Consider machine:

Df (M) {
if MHf

(M ;M) = “yes”

then “no”;

else “yes”;

}

• Df on input M runs in the same time as MHf
on input

M ;M , i.e., in time f(⌊ 2n+1
2 ⌋) = f(n), where n = |M |.a

aA student pointed out on October 6, 2004, that this estimation omits

the time to write down M ;M .

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 214

The Proof (concluded)

• First,

Df (Df) = “yes”

⇒ Df ;Df ̸∈ Hf

⇒ Df does not accept Df within time f(|Df |)

⇒ Df (Df) ̸= “yes”

⇒ Df (Df) = “no”

a contradiction

• Similarly, Df (Df) = “no” ⇒ Df (Df) = “yes.”

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 215

The Time Hierarchy Theorem

Theorem 17 If f(n) ≥ n is proper, then

TIME(f(n)) (TIME(f(2n+ 1)3).

• The quantified halting problem makes it so.

Corollary 18 P (E.

• P ⊆ TIME(2n) because poly(n) ≤ 2n for n large enough.

• But by Theorem 17,

TIME(2n) (TIME((22n+1)3) ⊆ E.

• So P (E.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 216

The Space Hierarchy Theorem

Theorem 19 (Hennie and Stearns (1966)) If f(n) is

proper, then

SPACE(f(n)) (SPACE(f(n) log f(n)).

Corollary 20 L (PSPACE.

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 217

Nondeterministic Time Hierarchy Theorems

Theorem 21 (Cook (1973)) NTIME(nr) (NTIME(ns)

whenever 1 ≤ r < s.

Theorem 22 (Seiferas, Fischer, and Meyer (1978)) If

T1(n), T2(n) are proper, then

NTIME(T1(n)) (NTIME(T2(n))

whenever T1(n+ 1) = o(T2(n)).

c⃝2013 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 218

