Nondeterministic Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides L and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 3 on p. 76), constant coefficients do not matter.

Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- REAChability asks if, given nodes a and b, does G contain a path from a to b ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: NSPACE $(n \log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x_{1}:=a ;$ Assume $a \neq b$.\}
3: for $i=2,3, \ldots, m$ do
4: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The i th node. $\}$
5: end for
6: for $i=2,3, \ldots, m$ do
7: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
8: "no";
9: end if
10: \quad if $x_{i}=b$ then
11: "yes";
12: end if
13: end for
14: "no";

In Fact, REACHABILITY $\in \operatorname{NSPACE}(\log n)$

1: Determine the number of nodes m; \{Note $m \leq n$.\}
2: $x:=a$;
3: for $i=2,3, \ldots, m$ do
4: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{m}\right\} ;\{$ The next node. $\}$
5: if $(x, y) \notin E$ then
6: "no";
7: end if
8: \quad if $y=b$ then
9: "yes";
10: end if
11: $x:=y$;
12: end for
13: "no";

Space Analysis

- Variables m, i, x, and y each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n)
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- REACHAbility $\in \mathrm{P}$ (p. 214).

Undecidability

God exists since mathematics is consistent, and the Devil exists since we cannot prove it. - André Weil (1906-1998)

Whatsoever we imagine is finite. Therefore there is no idea, or conception of any thing we call infinite.

- Thomas Hobbes (1588-1679), Leviathan

Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers \mathbb{Z}.

$$
* 0 \leftrightarrow 0
$$

$$
* 1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots .
$$

$$
*-1 \leftrightarrow 2,-2 \leftrightarrow 4,-3 \leftrightarrow 6, \ldots
$$

- Set of positive integers $\mathbb{Z}^{+}: i \leftrightarrow i-1$.
- Set of positive odd integers: $i \leftrightarrow(i-1) / 2$.
- Set of (positive) rational numbers: See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.

Rational Numbers Are Countable

Cardinality

- For any set A, define $|A|$ as A 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- 2^{A} denotes set A 's power set, that is $\{B: B \subseteq A\}$.
- E.g., $\{0,1\}$'s power set is $2^{\{0,1\}}=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.

Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between A and a subset of B 's.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$.
- So $|\mathbb{N}| \leq|\mathbb{Z}|$.
- So $|\mathbb{N}| \leq|\mathbb{R}|$.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- If $A \subsetneq B$, then $|A|<|B|$?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 114). ${ }^{\text {a }}$
- A lot of "paradoxes."

[^0]
Galileo's ${ }^{a}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts. ${ }^{\text {c }}$
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinions.

```
a}\mathrm{ a Galileo (1564-1642).
b}\mathrm{ Euclid (325 B.C.-265 B.C.).
c}\mp@subsup{}{}{c}Leibniz never challenges that axiom (Knobloch, 1999).
```


Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^1]
Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

David Hilbert (1862-1943)

The point of philosophy is to start with something so simple as not to seem worth stating, and to end with something so paradoxical that no one will believe it.

- Bertrand Russell (1872-1970)

Cantor's Theorem

Theorem 6 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose $\left(2^{\mathbb{N}}\right)$ is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection. ${ }^{\text {a }}$
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.

[^2]
The Proof (concluded)

- If $n \in f(n)=B$, then $n \in B$, but then $n \notin B$ by B 's definition.
- If $n \notin f(n)=B$, then $n \notin B$, but then $n \in B$ by B 's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

Georg Cantor (1845-1918)

Kac and Ulam (1968), "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."

Cantor's Diagonalization Argument Illustrated

A Corollary of Cantor's Theorem

Corollary $\mathbf{7}$ For any set T, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite T case as $k<2^{k}$.
- Assume T is infinite now.
- To prove $|T| \leq\left|2^{T}\right|$, simply consider $f(x)=\{x\} \in 2^{T}$.
- f maps a member of $T=\{a, b, c, \ldots\}$ to the corresponding member of $\{\{a\},\{b\},\{c\}, \ldots\} \subseteq 2^{T}$.
- To prove the strict inequality $|T| \lesseqgtr\left|2^{T}\right|$, we use the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 8 The set of all functions on \mathbb{N} is not countable.

- It suffices to prove it for functions from \mathbb{N} to $\{0,1\}$.
- Every function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a subset of \mathbb{N} :

$$
\{n: f(n)=1\} \subseteq \mathbb{N},
$$

and vice versa.

- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Cantor's theorem (p. 124) then implies the claim.

Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer. ${ }^{\text {a }}$
- Hence every program corresponds to some integer.
- The set of programs is countable.
${ }^{\text {a }}$ Different binary strings may be mapped to the same integer (e.g., "001" and "01"). To prevent it, use the lexicographic order as the mapping or simply insert " 1 " as the most significant bit of the binary string before the mapping (so "001" becomes "1001"). Contributed by Mr. Yu-Chih Tung (R98922167) on October 5, 2010.

Existence of Uncomputable Problems (concluded)

- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 8 (p. 129).
- So there are functions for which no programs exist. ${ }^{\text {a }}$

[^3]
Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
- Both M and x are over the alphabet of U.
- U simulates M on x so that

$$
U(M ; x)=M(x) .
$$

- U is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^4]
The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We knew undecidable problems exist (p. 130).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does M halt on input x ?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- If $M(x)$ diverges, so does U.
- This TM accepts H.

H Is Not Recursive ${ }^{\text {a }}$

- Suppose H is recursive.
- Then there is a TM M_{H} that decides H.
- Consider the program $D(M)$ that calls M_{H} :

1: if $M_{H}(M ; M)=$ "yes" then
2: $\quad \nearrow$; \{Writing an infinite loop is easy.\}
: else
4: "yes";
5: end if
${ }^{\text {a }}$ Turing (1936).

H Is Not Recursive (concluded)

- Consider $D(D)$:
$-D(D)=\nearrow \Rightarrow M_{H}(D ; D)=$ "yes" $\Rightarrow D ; D \in H \Rightarrow$ $D(D) \neq \nearrow$, a contradiction.
- $D(D)=$ "yes" $\Rightarrow M_{H}(D ; D)="$ no" $\Rightarrow D ; D \notin H \Rightarrow$ $D(D)=\nearrow$, a contradiction.

Comments

- Two levels of interpretations of M :
- A sequence of 0 s and 1 s (data).
- An encoding of instructions (programs).
- There are no paradoxes with $D(D)$.
- Concepts should be familiar to computer scientists.
- Feed a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a sorting program to a sorting program, etc.

Cantor's Paradox (1899a)

- Let T be the set of all sets. ${ }^{\text {b }}$
- Then $2^{T} \subseteq T$ because 2^{T} is a set.
- But we know ${ }^{\text {c }}\left|2^{T}\right|>|T|$ (p. 128)!
- We got a "contradiction."
- Are we willing to give up Cantor's theorem?
- If not, what is a set?

[^5]
Self-Loop Paradoxes ${ }^{\text {a }}$

Russell's Paradox (1901): Consider $R=\{A: A \notin A\}$.

- If $R \in R$, then $R \notin R$ by definition.
- If $R \notin R$, then $R \in R$ also by definition.
- In either case, we have a "contradiction." ${ }^{b}$

Eubulides: The Cretan says, "All Cretans are liars."
Liar's Paradox: "This sentence is false."
Hypochondriac: a patient (like Gödel) with imaginary symptoms and ailments.

[^6]
Self-Loop Paradoxes (continued)

Sharon Stone in The Specialist (1994): "I'm not a woman you can trust."

Spin City (1996-2002): "I am not gay, but my boyfriend is."

Numbers 12:3, Old Testament:"Moses was the most humble person in all the world [\cdots]" (attributed to Moses).

Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: "ye live in me and I would live in you."

John 17:21, New Testament: "just as you are in me and I am in you."

Pagan ${ }^{6}$ Christian Creeds (1920): "I was moved to Odin, myself to myself."

Soren Kierkegaard in Fear and Trembling (1843): "to strive against the whole world is a comfort, to strive with oneself is dreadful."

Bertrand Russell (1872-1970)

Karl Popper (1974), "perhaps the greatest philosopher since Kant."

Reductions in Proving Undecidability

- Suppose we are asked to prove that L is undecidable.
- Suppose L^{\prime} (such as H) is known to be undecidable.
- Find a computable transformation R (called reduction) from L^{\prime} to L such that ${ }^{\text {a }}$

$$
\forall x\left\{x \in L^{\prime} \text { if and only if } R(x) \in L\right\} .
$$

- Now we can answer " $x \in L^{\prime}$?" for any x by asking " $R(x) \in L$?" because they have the same answer. - L^{\prime} is said to be reduced to L.

[^7]
Reductions in Proving Undecidability (concluded)

- If L were decidable, " $R(x) \in L$?" becomes computable and we have an algorithm to decide L^{\prime}, a contradiction!
- So L must be undecidable.

Theorem 9 Suppose language L_{1} can be reduced to language L_{2}. If L_{1} is not recursive, then L_{2} is not recursive.

More Undecidability

- $H^{*}=\{M: M$ halts on all inputs $\}$.
- We will reduce H to H^{*}.
- Given the question " $M ; x \in H$?", construct the following machine (this is the reduction): ${ }^{\text {a }}$

$$
M_{x}(y)\{M(x) ;\}
$$

- M halts on x if and only if M_{x} halts on all inputs.
- In other words, $M ; x \in H$ if and only if $M_{x} \in H^{*}$.
- So if H^{*} were recursive, H would be recursive, a contradiction.

[^8]
More Undecidability (concluded)

- $\{M ; x$: there is a y such that $M(x)=y\}$.
- $\{M ; x$: the computation M on input x uses all states of $M\}$.
- $\{M ; x ; y: M(x)=y\}$.

Complements of Recursive Languages

The complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.

Lemma 10 If L is recursive, then so is \bar{L}.

- Let L be decided by M, which is deterministic.
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L}.

Recursive and Recursively Enumerable Languages

Lemma 11 (Kleene's theorem) L is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M}, respectively.
- Simulate M and \bar{M} in an interleaved fashion.
- If M accepts, then halt on state "yes" because $x \in L$.
- If \bar{M} accepts, then halt on state "no" because $x \notin L$.
- Note that either M or \bar{M} (but not both) must accept the input.

A Very Useful Corollary and Its Consequences

Corollary $12 L$ is recursively enumerable but not recursive, then \bar{L} is not recursively enumerable.

- Suppose \bar{L} is recursively enumerable.
- Then both L and \bar{L} are recursively enumerable.
- By Lemma 11 (p. 148), L is recursive, a contradiction.

Corollary $13 \bar{H}$ is not recursively enumerable. ${ }^{\text {a }}$
${ }^{\text {a Recall that }} \bar{H}=\{M ; x: M(x)=\nearrow\}$.

R, RE, and coRE

RE: The set of all recursively enumerable languages.
coRE: The set of all languages whose complements are recursively enumerable.
\mathbf{R} : The set of all recursive languages.

- Note that coRE is not $\overline{\mathrm{RE}}$.
$-\operatorname{coRE}=\{L: \bar{L} \in \operatorname{RE}\}$.
$-\overline{\mathrm{RE}}=\{L: L \notin \mathrm{RE}\}$.

R, RE, and coRE (concluded)

- $R=R E \cap \operatorname{coRE}(p .148)$.
- There exist languages in RE but not in R and not in coRE.
- Such as H (p. 134, p. 135, and p. 149).
- There are languages in coRE but not in RE.
- Such as \bar{H} (p. 149).
- There are languages in neither RE nor coRE.

Undecidability in Logic and Mathematics

- First-order logic is undecidable (answer to Hilbert's "Entscheidungsproblem" (1928)). ${ }^{\text {a }}$
- Natural numbers with addition and multiplication is undecidable. ${ }^{\text {b }}$
- Rational numbers with addition and multiplication is undecidable. ${ }^{\text {c }}$

[^9]
Undecidability in Logic and Mathematics (concluded)

- Natural numbers with addition and equality is decidable and complete. ${ }^{\text {a }}$
- Elementary theory of groups is undecidable. ${ }^{\text {b }}$
aPresburger's Master's thesis (1928), his only work in logic. The direction was suggested by Tarski. Mojz̄esz Presburger (1904-1943) died in a concentration camp during World War II.
${ }^{\mathrm{b}}$ Tarski (1949).

Julia Hall Bowman Robinson (1919-1985)

Alfred Tarski (1901-1983)

[^0]: a Leibniz uses it to "prove" that there are no infinite numbers (Russell, 1914).

[^1]: ${ }^{\text {a }}$ David Hilbert (1862-1943).

[^2]: ${ }^{\text {a }}$ Note that $f(k)$ is a subset of \mathbb{N}.

[^3]: ${ }^{\text {a }}$ As a nondeterministic program may not compute a function, we consider only deterministic programs for this sentence. Contributed by Mr. Patrick Will (A99725101) on October 5, 2010.

[^4]: a Turing (1936).

[^5]: ${ }^{\text {a }}$ In a letter to Richard Dedekind. First published in Russell (1903).
 ${ }^{\mathrm{b}}$ Recall this ontological argument for the existence of God by St Anselm (1033-1109) in the 11th century: If something is possible but is not part of God, then God is not the greatest possible object of thought, a contradiction.
 ${ }^{\text {c Really? }}$

[^6]: ${ }^{\text {a }}$ E.g., Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid (1979) or Quine, The Ways of Paradox and Other Essays (1966).
 ${ }^{\mathrm{b}}$ Gottlob Frege (1848-1925) to Bertrand Russell in 1902, "Your discovery of the contradiction [...] has shaken the basis on which I intended to build arithmetic."

[^7]: ${ }^{\text {a Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, } 2005 .}$

[^8]: ${ }^{\text {a }}$ Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006. M_{x} ignores its input $y ; x$ is part of M_{x} 's code but not M_{x} 's input.

[^9]: ${ }^{\mathrm{a}}$ Church (1936).
 ${ }^{\text {b }}$ Rosser (1937).
 ${ }^{c}$ Robinson (1948).

