Theory of Computation

Final-Term Examination on January 8, 2013
Fall Semester, 2012

Notes: You may use any results proved in the class unless stated otherwise.
Recall:

e RP: If L € RP, then there exists a randomized polynomial-time TM
M such that:

— if x € L, then at least half of the computation paths of M on x
halt with “yes”;

— if ¢ L, then all computation paths halt with “no.”

e BPP: If L € BPP, then there exists a randomized polynomial-time
TM M such that:

— If z € L, then at least 3/4 of the computation paths of M on x

lead to “yes”;

— If o ¢ L, then at least 3/4 of the computation paths of M on z
lead to “no.”

o IP: If L € IP, then there exists an interactive proof system (P, V)
such that the prover runs in exponential time and the verifier runs in

probabilistic polynomial time and:
— If z € L, then the probability that x is accepted by the verifier is
at least 1 — 27171,
— If x ¢ L, then the probability that = is accepted by the verifier

with any prover replacing the original prover is at most 271,

Note that the number of rounds and the lengths of the messages are

both polynomials in |z|. You can assume V' sends out the first message.



Problem 1 (25 points) Prove (a) RP C BPP and (b) BPP C PSPACE.

Ans:

(a) Let M be a randomized polynomial-time TM that recognizes L € RP

with one-sided error-probability e. Assuming ¢ < 1/4 does not affect
RP (recall the slide on pp. 540). Thus the same TM M also recognizes
L with two-sided error-probability e.

(b) Let M be a randomized polynomial-time TM that recognizes L € BPP
with two-sided error-probability € < 1/4. Let r(n) be the number of
coin tosses of M. Then the following TM decides L:

Count of the number s of accepting paths.

Ifs>(1- 6)2”(”), then accept; otherwise, reject.

By reusing space across executions of the loop in counting the number

of accepting paths, this can be implemented in polynomial space.

Problem 2 (25 points) Please compute the Jacobi symbol (1003/1151).

You need to write down the calculations instead of merely giving the answer.

(Hint: Let p and ¢ be two odd numbers (not necessarily primes). The law of

quadratic reciprocity says (p|q)(q|p) =
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Problem 3 (25 points) Define IP* as IP except that the prover now runs
in (deterministic) polynomial space instead of exponential time. Show that
IP* C PSPACE. (You cannot use the known fact IP = PSPACE.)



Ans: Let L € IP*, (P,V) be an interactive proof system, V be a proba-
bilistic polynomial-time verifier, P be a polynomial-space prover, ¢ and k
be some positive integers, n be the length of the input, m; € {0,1}* be
ACCEPT/REJECT or the message sent in round i, and r € {0,1}"" be the
random bit string in each round (for brevity, we had assumed r is of the same
length in each round). Assume P and V interact for at most n¢ rounds, and
V' accepts or rejects the input before or at round n¢. Construct deterministic
TM M to simulate (P, V') as follows. Assume without loss of generality that
V' sends the first message. In the algorithm, ¢ is the total number of choices
for the random bits generated by V up to round ¢, and a is the number of
choices for which V' accepts up to round i. On any input x, M computes a

and t recursively as follows by calling I'(z, 1):

Algorithm (z,i,m;,...,m;_1)
1: (a,t) = (O, O);
2: if i = n° then

3. for all r € {0,1}"" do

4 if V(x,i,my,mq,...,m;_1,7) = ACCEPT then
5: a=a+1;

6: end if

7 end for

8 return (a,2");

9: else

10: for all » € {0,1}"" do

11: m; = V(x,i,my,...,mi_1,7);

12: if m; = ACCEPT then

13: (a,t) = (a+1,t+1);

14: else if m; = REJECT then

15: (a,t) = (a,t +1);

16: else

17: mir1 = P(x,i+1,mq,...,m;);

18: (a,t) = (a,t) + D(z,i+ 2,mq, ..., mis1);
19: end if

20: end for

21: return (a,t);

22: end if

Let s = ¢. If s > 2/3, then M accepts x; otherwise, M rejects .

This algorithm performs in polynomial space. So M decides L in polynomial

space. |



Problem 4 (25 points) Prove that there is no e-approximation algorithm
for 6-COLORING if € <1/7 and assuming P # NP. (Hint: Recall that an

e-approximation algorithm F' guarantees that

OPT < c(F(G)) < §5F
where ¢(F(G)) is the number of colors the polynomial-time algorithm F uses
to color G. What is the quality of the coloring scheme if you color the input
graph using the alleged e-approximation algorithm?)

Ans: We prove the problem by contradiction. We assume that there exists
an e-approximation algorithm F' that colors the graph G in polynomial time.
Given € <1/7, F will color G with at most x = % = 6 in polynomial
time if G is 6-colorable. That is, F' can decide the answer "YES” or "NO”
to NP-complete problem 6-coloring in polynomial time. However, we know
that it is impossible to solve an NP-complete problem in polynomial time if

P£NP. |



