
Approximability

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 653

All science is dominated by

the idea of approximation.

— Bertrand Russell (1872–1970)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 654

Just because the problem is NP-complete

does not mean that

you should not try to solve it.

— Stephen Cook (2002)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 655

Tackling Intractable Problems

• Many important problems are NP-complete or worse.

• Heuristics have been developed to attack them.

• They are approximation algorithms.

• How good are the approximations?

– We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

• Are there NP problems that cannot be approximated

well (assuming NP ̸= P)?

• Are there NP problems that cannot be approximated at

all (assuming NP ̸= P)?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 656

Some Definitions

• Given an optimization problem, each problem

instance x has a set of feasible solutions F (x).

• Each feasible solution s ∈ F (x) has a cost c(s) ∈ Z+.

– Here, cost refers to the quality of the feasible

solution, not the time required to obtain it.

– It is our objective function, e.g., total distance,

number of satisfied expressions, or cut size.

• The optimum cost is opt(x) = mins∈F (x) c(s) for a

minimization problem.

• It is opt(x) = maxs∈F (x) c(s) for a maximization

problem.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 657

Approximation Algorithms

• Let algorithm M on x returns a feasible solution.

• M is an ϵ-approximation algorithm, where ϵ ≥ 0, if

for all x,
|c(M(x))− opt(x)|

max(opt(x), c(M(x)))
≤ ϵ.

– For a minimization problem,

c(M(x))−mins∈F (x) c(s)

c(M(x))
≤ ϵ.

– For a maximization problem,

maxs∈F (x) c(s)− c(M(x))

maxs∈F (x) c(s)
≤ ϵ. (16)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 658

Approximation Ratio

• ϵ-approximation algorithms can be defined via

approximation ratios.

• For a minimization problem, the approximation ratio is

mins∈F (x) c(s)

c(M(x))
≥ 1− ϵ.

• For a maximization problem, the approximation ratio is

c(M(x))

maxs∈F (x) c(s)
≥ 1− ϵ.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 659

Lower and Upper Bounds

• For a minimization problem,

min
s∈F (x)

c(s) ≤ c(M(x)) ≤
mins∈F (x) c(s)

1− ϵ
.

• For a maximization problem,

(1− ϵ)× max
s∈F (x)

c(s) ≤ c(M(x)) ≤ max
s∈F (x)

c(s). (17)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 660

Range Bounds

• ϵ ranges between 0 (best) and 1 (worst).

• For maximization problems, an ϵ-approximation

algorithm returns solutions within

[(1− ϵ)× opt,opt].

• For minimization problems, an ϵ-approximation

algorithm returns solutions within[
opt,

opt

1− ϵ

]
.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 661

Approximation Thresholds

• For each NP-complete optimization problem, we shall be

interested in determining the smallest ϵ for which there

is a polynomial-time ϵ-approximation algorithm.

• But sometimes ϵ has no minimum value.

• The approximation threshold is the greatest lower

bound of all ϵ ≥ 0 such that there is a polynomial-time

ϵ-approximation algorithm.

• By a standard theorem in real analysis, such a threshold

must exist.a

aBauldry (2009).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 662

Approximation Thresholds (concluded)

• The approximation threshold of an optimization problem

can be anywhere between 0 (approximation to any

desired degree) and 1 (no approximation is possible).

• If P = NP, then all optimization problems in NP have

an approximation threshold of 0.

• So we assume P ̸= NP for the rest of the discussion.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 663

node cover

• node cover seeks the smallest C ⊆ V in graph

G = (V,E) such that for each edge in E, at least one of

its endpoints is in C.

• A heuristic to obtain a good node cover is to iteratively

move a node with the highest degree to the cover.

• This turns out to produce an approximation ratio of

opt(x)

c(M(x))
= Θ(log−1 n).

• So it is not an ϵ-approximation algorithm for any

constant ϵ < 1.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 664

A 0.5-Approximation Algorithma

1: C := ∅;
2: while E ̸= ∅ do

3: Delete an arbitrary edge {u, v } from E;

4: Add u and v to C; {Add 2 nodes to C each time.}
5: Delete edges incident with u and v from E;

6: end while

7: return C;

aJohnson (1974).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 665

Analysis

• It is easy to see that C is a node cover.

• C contains |C|/2 edges.

• No two edges of C share a node.a

• Any node cover must contain at least one node from

each of these edges.

aIn fact, C as a set of edges is a maximal matching.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 666

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 667

Analysis (concluded)

• This means that opt(G) ≥ |C|/2.

• So the approximation ratio

opt(G)

|C|
≥ 1/2.

• The approximation threshold is ≤ 0.5.a

aThis ratio 0.5 is also the lower bound for any “greedy” algorithms

(see Davis and Impagliazzo (2004)).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 668

The 0.5 Bound Is Tight for the Algorithma

Optimal cover

aContributed by Mr. Jenq-Chung Li (R92922087) on December 20,

2003. Recall that König’s theorem says the size of a maximum matching

equals that of a minimum node cover in a bipartite graph.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 669

Maximum Satisfiability

• Given a set of clauses, maxsat seeks the truth

assignment that satisfies the most.

• max2sat is already NP-complete (p. 313), so maxsat is

NP-complete.

• Consider the more general k-maxgsat for constant k.

– Let Φ = {ϕ1, ϕ2, . . . , ϕm} be a set of boolean

expressions in n variables.

– Each ϕi is a general expression involving k variables.

– k-maxgsat seeks the truth assignment that satisfies

the most expressions.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 670

A Probabilistic Interpretation of an Algorithm

• Each ϕi involves exactly k variables and is satisfied by si

of the 2k truth assignments.

• A random truth assignment ∈ {0, 1}n satisfies ϕi with

probability p(ϕi) = si/2
k.

– p(ϕi) is easy to calculate as k is a constant.

• Hence a random truth assignment satisfies an expected

number

p(Φ) =
m∑
i=1

p(ϕi)

of expressions ϕi.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 671

The Search Procedure

• Clearly

p(Φ) =
1

2
{ p(Φ[x1 = true]) + p(Φ[x1 = false]) }.

• Select the t1 ∈ {true, false} such that p(Φ[x1 = t1]) is

the larger one.

• Note that p(Φ[x1 = t1]) ≥ p(Φ).

• Repeat the procedure with expression Φ[x1 = t1] until

all variables xi have been given truth values ti and all ϕi

are either true or false.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 672

The Search Procedure (concluded)

• By our hill-climbing procedure,

p(Φ)

≤ p(Φ[x1 = t1])

≤ p(Φ[x1 = t1, x2 = t2])

≤ · · ·

≤ p(Φ[x1 = t1, x2 = t2, . . . , xn = tn]).

• So at least p(Φ) expressions are satisfied by truth

assignment (t1, t2, . . . , tn).

• Note that the algorithm is deterministic!

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 673

Approximation Analysis

• The optimum is at most the number of satisfiable

ϕi—i.e., those with p(ϕi) > 0.

• Hence the ratio of algorithm’s output vs. the optimum

isa

≥ p(Φ)∑
p(ϕi)>0 1

=

∑
i p(ϕi)∑

p(ϕi)>0 1
≥ min

p(ϕi)>0
p(ϕi).

• This is a polynomial-time ϵ-approximation algorithm

with ϵ = 1−minp(ϕi)>0 p(ϕi).

• Because p(ϕi) ≥ 2−k, the heuristic is a polynomial-time

ϵ-approximation algorithm with ϵ = 1− 2−k.

aRecall that (
∑

i ai)/(
∑

i bi) ≥ mini ai/bi.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 674

Back to maxsat

• In maxsat, the ϕi’s are clauses (like x ∨ y ∨ ¬z).

• Hence p(ϕi) ≥ 1/2, which happens when ϕi contains a

single literal.

• And the heuristic becomes a polynomial-time

ϵ-approximation algorithm with ϵ = 1/2.a

• If the clauses have k distinct literals, p(ϕi) = 1− 2−k.

• And the heuristic becomes a polynomial-time

ϵ-approximation algorithm with ϵ = 2−k.

– This is the best possible for k ≥ 3 unless P = NP.

aJohnson (1974).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 675

max cut Revisited

• The NP-complete max cut seeks to partition the nodes

of graph G = (V,E) into (S, V − S) so that there are as

many edges as possible between S and V − S.a

• Local search starts from a feasible solution and

performs “local” improvements until none are possible.

• Next we present a local search algorithm for max cut.

aRecall p. 342.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 676

A 0.5-Approximation Algorithm for max cut

1: S := ∅;
2: while ∃v ∈ V whose switching sides results in a larger

cut do

3: Switch the side of v;

4: end while

5: return S;

• A 0.12-approximation algorithm exists.a

• 0.059-approximation algorithms do not exist unless

NP = ZPP.

aGoemans and Williamson (1995).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 677

Analysis

V3 V4

V2V1

Optimal cut

Our cut

e12

e13
e24

e34

e14 e23

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 678

Analysis (continued)

• Partition V = V1 ∪ V2 ∪ V3 ∪ V4, where

– Our algorithm returns (V1 ∪ V2, V3 ∪ V4).

– The optimum cut is (V1 ∪ V3, V2 ∪ V4).

• Let eij be the number of edges between Vi and Vj .

• Our algorithm returns a cut of size e13 + e14 + e23 + e24.

• The optimum cut size is e12 + e34 + e14 + e23.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 679

Analysis (continued)

• For each node v ∈ V1, its edges to V1 ∪ V2 are

outnumbered by those to V3 ∪ V4.

– Otherwise, v would have been moved to V3 ∪ V4 to

improve the cut.

• Considering all nodes in V1 together, we have

2e11 + e12 ≤ e13 + e14

– It is 2e11 is because each edge in V1 is counted twice.

• The above inequality implies

e12 ≤ e13 + e14.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 680

Analysis (concluded)

• Similarly,

e12 ≤ e23 + e24

e34 ≤ e23 + e13

e34 ≤ e14 + e24

• Add all four inequalities, divide both sides by 2, and add

the inequality e14 + e23 ≤ e14 + e23 + e13 + e24 to obtain

e12 + e34 + e14 + e23 ≤ 2(e13 + e14 + e23 + e24).

• The above says our solution is at least half the optimum.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 681

Approximability, Unapproximability, and Between

• knapsack, node cover, maxsat, and max cut have

approximation thresholds less than 1.

– knapsack has a threshold of 0 (p. 685).

– But node cover and maxsat have a threshold

larger than 0.

• The situation is maximally pessimistic for tsp, which

cannot be approximated (p. 683).

– The approximation threshold of tsp is 1.

∗ The threshold is 1/3 if tsp satisfies the triangular

inequality.

– The same holds for independent set.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 682

Unapproximability of tspa

Theorem 76 The approximation threshold of tsp is 1

unless P = NP.

• Suppose there is a polynomial-time ϵ-approximation

algorithm for tsp for some ϵ < 1.

• We shall construct a polynomial-time algorithm for the

NP-complete hamiltonian cycle.

• Given any graph G = (V,E), construct a tsp with |V |
cities with distances

dij =

 1, if { i, j } ∈ E
|V |
1−ϵ , otherwise

aSahni and Gonzales (1976).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 683

The Proof (concluded)

• Run the alleged approximation algorithm on this tsp.

• Suppose a tour of cost |V | is returned.
– This tour must be a Hamiltonian cycle.

• Suppose a tour with at least one edge of length |V |
1−ϵ is

returned.

– The total length of this tour is > |V |
1−ϵ .

– Because the algorithm is ϵ-approximate, the optimum

is at least 1− ϵ times the returned tour’s length.

– The optimum tour has a cost exceeding |V |.
– Hence G has no Hamiltonian cycles.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 684

knapsack Has an Approximation Threshold of Zeroa

Theorem 77 For any ϵ, there is a polynomial-time

ϵ-approximation algorithm for knapsack.

• We have n weights w1, w2, . . . , wn ∈ Z+, a weight limit

W , and n values v1, v2, . . . , vn ∈ Z+.b

• We must find an S ⊆ {1, 2, . . . , n} such that∑
i∈S wi ≤ W and

∑
i∈S vi is the largest possible.

aIbarra and Kim (1975).
bIf the values are fractional, the result is slightly messier, but the

main conclusion remains correct. Contributed by Mr. Jr-Ben Tian

(R92922045) on December 29, 2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 685

The Proof (continued)

• Let

V = max{v1, v2, . . . , vn}.

• Clearly,
∑

i∈S vi ≤ nV .

• Let 0 ≤ i ≤ n and 0 ≤ v ≤ nV .

• W (i, v) is the minimum weight attainable by selecting

only from the first i items and with a total value of v.

– It is an (n+ 1)× (nV + 1) table.

• Set W (0, v) = ∞ for v ∈ { 1, 2, . . . , nV } and W (i, 0) = 0

for i = 0, 1, . . . , n.a

aContributed by Mr. Ren-Shuo Liu (D98922016) and Mr. Yen-Wei Wu

(D98922013) on December 28, 2009.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 686

The Proof (continued)

• Then, for 0 ≤ i < n,

W (i+ 1, v) = min{W (i, v),W (i, v − vi+1) + wi+1}.

• Finally, pick the largest v such that W (n, v) ≤ W .

• The running time is O(n2V), not polynomial time.

• Key idea: Limit the number of precision bits.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 687

v

<W

nV

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 688

The Proof (continued)

• Define

v′i = 2b
⌊ vi
2b

⌋
.

– This is equivalent to zeroing each vi’s last b bits.

• From the original instance

x = (w1, . . . , wn,W, v1, . . . , vn),

define the approximate instance

x′ = (w1, . . . , wn,W, v′1, . . . , v
′
n).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 689

The Proof (continued)

• Solving x′ takes time O(n2V/2b).

– The algorithm only performs subtractions on the

vi-related values.

– So the b last bits can be removed from the

calculations.

– That is, use v′′i =
⌊
vi

2b

⌋
and V = max(v′′1 , v

′′
2 , . . . , v

′′
n)

in the calculations.

– Then multiply the returned value by 2b.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 690

The Proof (continued)

• The solution S′ is close to the optimum solution S:∑
i∈S′

vi ≥
∑
i∈S′

v′i ≥
∑
i∈S

v′i ≥
∑
i∈S

(vi − 2b) ≥
∑
i∈S

vi − n2b.

• Hence ∑
i∈S′

vi ≥
∑
i∈S

vi − n2b.

• Without loss of generality, assume wi ≤ W for all i.

– Otherwise, item i is redundant.

• V is a lower bound on opt.

– Picking an item with value V is a legitimate choice.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 691

The Proof (concluded)

• The relative error from the optimum is ≤ n2b/V :∑
i∈S vi −

∑
i∈S′ vi∑

i∈S vi
≤

∑
i∈S vi −

∑
i∈S′ vi

V
≤ n2b

V
.

• Suppose we pick b = ⌊log2 ϵV
n ⌋.

• The algorithm becomes ϵ-approximate.a

• The running time is then O(n2V/2b) = O(n3/ϵ), a

polynomial in n and 1/ϵ.b

aSee Eq. (16) on p. 658.
bIt hence depends on the value of 1/ϵ. Thanks to a lively class dis-

cussion on December 20, 2006. If we fix ϵ and let the problem size

increase, then the complexity is cubic. Contributed by Mr. Ren-Shan

Luoh (D97922014) on December 23, 2008.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 692

Comments

• independent set and node cover are reducible to

each other (Corollary 40, p. 335).

• node cover has an approximation threshold at most

0.5 (p. 666).

• But independent set is unapproximable (see the

textbook).

• independent set limited to graphs with degree ≤ k is

called k-degree independent set.

• k-degree independent set is approximable (see the

textbook).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 693

Finis

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 694

