The Number of Witnesses to Compositeness

Theorem 67 (Solovay and Strassen (1977)) If N is an odd composite, then $(M \mid N)=M^{(N-1) / 2} \bmod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 66 (p. 526) there is at least one $a \in \Phi(N)$ such that $(a \mid N) \neq a^{(N-1) / 2} \bmod N$.
- Let $B=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subseteq \Phi(N)$ be the set of all distinct residues such that $\left(b_{i} \mid N\right)=b_{i}^{(N-1) / 2} \bmod N$.
- Let $a B=\left\{a b_{i} \bmod N: i=1,2, \ldots, k\right\}$.
- Clearly, $a B \subseteq \Phi(N)$, too.

The Proof (concluded)

- $|a B|=k$.
- $a b_{i}=a b_{j} \bmod N$ implies $N \mid a\left(b_{i}-b_{j}\right)$, which is impossible because $\operatorname{gcd}(a, N)=1$ and $N>\left|b_{i}-b_{j}\right|$.
- $a B \cap B=\emptyset$ because

$$
\left(a b_{i}\right)^{(N-1) / 2}=a^{(N-1) / 2} b_{i}^{(N-1) / 2} \neq(a \mid N)\left(b_{i} \mid N\right)=\left(a b_{i} \mid N\right) .
$$

- Combining the above two results, we know

$$
\frac{|B|}{\phi(N)} \leq \frac{|B|}{|B \cup a B|}=0.5 .
$$

1: if N is even but $N \neq 2$ then
2: return " N is composite";
3: else if $N=2$ then
4: return " N is a prime";
5: end if
6: Pick $M \in\{2,3, \ldots, N-1\}$ randomly;
7: if $\operatorname{gcd}(M, N)>1$ then
8: return " N is composite";
9: else
10: \quad if $(M \mid N) \neq M^{(N-1) / 2} \bmod N$ then
11: return " N is composite";
12: else
13: return " N is a prime";
14: end if
15: end if

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPositeness).
- When the algorithm says the number is composite, it is always correct.
- The probability of a false negative is at most one half.
- Suppose the input is composite.
- The probability that the algorithm says the number is a prime is ≤ 0.5 by Theorem 67 (p. 533).
- So it is a Monte Carlo algorithm for compositeness.

The Improved Density Attack for Compositeness

Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time $p(n)$ and has 2 nondeterministic choices at each step.
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
- If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where $n=|x|$.
- If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time). ${ }^{a}$

[^0]
Comments on RP

- In analogy to Proposition 35 (p. 296), a "yes" instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can cast RP in the language of probability.

Comments on RP (concluded)

- The probability of false negatives is $\epsilon \leq 0.5$.
- But any constant between 0 and 1 can replace 0.5.
- Repeat the algorithm $k=\left\lceil-\frac{1}{\log _{2} \epsilon}\right\rceil$ times and answer "yes" only if all runs answer "yes."
- The probability of false negatives becomes $\epsilon^{k} \leq 0.5$.
- In fact, ϵ can be arbitrarily close to 1 as long as it is at most $1-1 / q(n)$ for some polynomial $q(n)$.
$--\frac{1}{\log _{2} \epsilon}=O\left(\frac{1}{1-\epsilon}\right)=O(q(n))$.

Where RP Fits

- $\mathrm{P} \subseteq \mathrm{RP} \subseteq \mathrm{NP}$.
- A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
- A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- COMPOSITENESS \in RP; ${ }^{\text {a }}$ PRIMES $\in \operatorname{coRP}$; PRIMES \in RP. ${ }^{\text {b }}$
- In fact, PRIMES \in P. ${ }^{\text {c }}$
- RP \cup coRP is an alternative "plausible" notion of efficient computation.

[^1]
ZPP ${ }^{\text {a }}$ (Zero Probabilistic Polynomial)

- The class ZPP is defined as $\mathrm{RP} \cap$ coRP.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives and the other with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
- A positive answer from the one without false positives.
- A negative answer from the one without false negatives.

[^2]
The ZPP Algorithm (Las Vegas)

1: $\{$ Suppose $L \in \mathrm{ZPP}$.
2: $\left\{N_{1}\right.$ has no false positives, and N_{2} has no false negatives. $\}$
3: while true do
4: if $N_{1}(x)=$ "yes" then
5: return "yes";
6: end if
7: if $N_{2}(x)=$ "no" then
8: return "no";
9: end if
10: end while

ZPP (concluded)

- The expected running time for the correct answer to emerge is polynomial.
- The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
- Let $p(n)$ be the running time of each run of the while-loop.
- The expected running time for a definite answer is

$$
\sum_{i=1}^{\infty} 0.5^{i} i p(n)=2 p(n)
$$

- Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.

Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5+\epsilon$ to appear and the other $0.5-\epsilon$, for some $0<\epsilon<0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side - with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound ${ }^{\text {a }}$

Theorem 68 (Chernoff (1952)) Suppose $x_{1}, x_{2}, \ldots, x_{n}$ are independent random variables taking the values 1 and 0 with probabilities p and $1-p$, respectively. Let $X=\sum_{i=1}^{n} x_{i}$. Then for all $0 \leq \theta \leq 1$,

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-\theta^{2} p n / 3}
$$

- The probability that the deviate of a binomial random variable from its expected value

$$
E[X]=E\left[\sum_{i=1}^{n} x_{i}\right]=p n
$$

decreases exponentially with the deviation.

[^3]
The Proof

- Let t be any positive real number.
- Then

$$
\operatorname{prob}[X \geq(1+\theta) p n]=\operatorname{prob}\left[e^{t X} \geq e^{t(1+\theta) p n}\right]
$$

- Markov's inequality (p. 484) generalized to real-valued random variables says that

$$
\operatorname{prob}\left[e^{t X} \geq k E\left[e^{t X}\right]\right] \leq 1 / k
$$

- With $k=e^{t(1+\theta) p n} / E\left[e^{t X}\right]$, we have

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n} E\left[e^{t X}\right]
$$

The Proof (continued)

- Because $X=\sum_{i=1}^{n} x_{i}$ and x_{i} 's are independent,

$$
E\left[e^{t X}\right]=\left(E\left[e^{t x_{1}}\right]\right)^{n}=\left[1+p\left(e^{t}-1\right)\right]^{n} .
$$

- Substituting, we obtain

$$
\begin{aligned}
& \operatorname{prob}[X \geq(1+\theta) p n] \leq e^{-t(1+\theta) p n}\left[1+p\left(e^{t}-1\right)\right]^{n} \\
& \leq e^{-t(1+\theta) p n} e^{p n\left(e^{t}-1\right)} \\
& \text { as }(1+a)^{n} \leq e^{a n} \text { for all } a>0 .
\end{aligned}
$$

The Proof (concluded)

- With the choice of $t=\ln (1+\theta)$, the above becomes

$$
\operatorname{prob}[X \geq(1+\theta) p n] \leq e^{p n[\theta-(1+\theta) \ln (1+\theta)]}
$$

- The exponent expands to $-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6}-\frac{\theta^{4}}{12}+\cdots$ for $0 \leq \theta \leq 1$, which is less than

$$
-\frac{\theta^{2}}{2}+\frac{\theta^{3}}{6} \leq \theta^{2}\left(-\frac{1}{2}+\frac{\theta}{6}\right) \leq \theta^{2}\left(-\frac{1}{2}+\frac{1}{6}\right)=-\frac{\theta^{2}}{3}
$$

Power of the Majority Rule

From $\operatorname{prob}[X \leq(1-\theta) p n] \leq e^{-\theta^{2} p n / 2}$ (prove it):
Corollary 69 If $p=(1 / 2)+\epsilon$ for some $0 \leq \epsilon \leq 1 / 2$, then

$$
\operatorname{prob}\left[\sum_{i=1}^{n} x_{i} \leq n / 2\right] \leq e^{-\epsilon^{2} n / 2}
$$

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 545) hence demands, e.g., $n \approx 1.4 k / \epsilon^{2}$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

BPP ${ }^{\text {a }}$ (Bounded Probabilistic Polynomial)

- The class BPP contains all languages L for which there is a precise polynomial-time $\mathrm{NTM} N$ such that:
- If $x \in L$, then at least $3 / 4$ of the computation paths of N on x lead to "yes."
- If $x \notin L$, then at least $3 / 4$ of the computation paths of N on x lead to "no."
- So N accepts or rejects by a clear majority.

[^4]
Magic 3/4?

- The number $3 / 4$ bounds the probability (ratio) of a right answer away from $1 / 2$.
- Any constant strictly between $1 / 2$ and 1 can be used without affecting the class BPP.
- In fact, as with RP,

$$
\frac{1}{2}+\frac{1}{q(n)}
$$

for any polynomial $q(n)$ can be used in place of $3 / 4$ (p. 540).

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1 / 2)+\epsilon$.
1: for $i=1,2, \ldots, 2 k+1$ do
2: \quad Run N on input x;
3: end for
4: if "yes" is the majority answer then
5: "yes";
6: else
7: "no";
8: end if

Analysis

- The running time remains polynomial, being $2 k+1$ times N 's running time.
- By Corollary 69 (p. 550), the probability of a false answer is at most $e^{-\epsilon^{2} k}$.
- By taking $k=\left\lceil 2 / \epsilon^{2}\right\rceil$, the error probability is at most 1/4.
- Recall that ϵ can be any inverse polynomial, because k remains polynomial in n.

Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- In this aspect, BPP has effectively replaced P.
- $(R P \cup \operatorname{coRP}) \subseteq(N P \cup \operatorname{coNP})$.
- $(R P \cup \operatorname{coRP}) \subseteq B P P$.
- Whether $\mathrm{BPP} \subseteq(\mathrm{NP} \cup$ coNP $)$ is unknown.
- But it is unlikely that $\mathrm{NP} \subseteq \mathrm{BPP}$ (see p. 571).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in$ BPP becomes one for \bar{L} by reversing the answer.
- So $\bar{L} \in \mathrm{BPP}$ and $\mathrm{BPP} \subseteq$ coBPP.
- Similarly coBPP \subseteq BPP.
- Hence BPP = coBPP.
- This approach does not work for RP. ${ }^{\text {a }}$

[^5]
BPP and coBPP

"The Good, the Bad, and the Ugly"

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identifying true/1 with "yes" and false/0 with "no," a boolean circuit with n inputs accepts certain strings in $\{0,1\}^{n}$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The size of a circuit is the number of gates in it.
- A family of circuits is an infinite sequence $\mathcal{C}=\left(C_{0}, C_{1}, \ldots\right)$ of boolean circuits, where C_{n} has n boolean inputs.
- For input $x \in\{0,1\}^{*}, C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

$$
C_{n} \text { accepts } L \cap\{0,1\}^{n} .
$$

Formal Definitions (concluded)

- $L \subseteq\{0,1\}^{*}$ has polynomial circuits if there is a family of circuits \mathcal{C} such that:
- The size of C_{n} is at most $p(n)$ for some fixed polynomial p.
- C_{n} accepts $L \cap\{0,1\}^{n}$.

Exponential Circuits Suffice for All Languages

- Theorem 15 (p. 186) implies that there are languages that cannot be solved by circuits of size $2^{n} /(2 n)$.
- But exponential circuits can solve all problems, decidable or otherwise.

Proposition 70 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2}.

- We will show that for any language $L \subseteq\{0,1\}^{*}$, $L \cap\{0,1\}^{n}$ can be decided by a circuit of size 2^{n+2}.

The Proof (concluded)

- Define boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, where

$$
f\left(x_{1} x_{2} \cdots x_{n}\right)= \begin{cases}1 & x_{1} x_{2} \cdots x_{n} \in L, \\ 0 & x_{1} x_{2} \cdots x_{n} \notin L .\end{cases}
$$

- $f\left(x_{1} x_{2} \cdots x_{n}\right)=\left(x_{1} \wedge f\left(1 x_{2} \cdots x_{n}\right)\right) \vee\left(\neg x_{1} \wedge f\left(0 x_{2} \cdots x_{n}\right)\right)$.
- The circuit size $s(n)$ for $f\left(x_{1} x_{2} \cdots x_{n}\right)$ hence satisfies

$$
s(n)=4+2 s(n-1)
$$

with $s(1)=1$.

- Solve it to obtain $s(n)=5 \times 2^{n-1}-4 \leq 2^{n+2}$.

The Circuit Complexity of P

Proposition 71 All languages in P have polynomial circuits.

- Let $L \in \mathrm{P}$ be decided by a TM in time $p(n)$.
- By Corollary 32 (p. 282), there is a circuit with $O\left(p(n)^{2}\right)$ gates that accepts $L \cap\{0,1\}^{n}$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Polynomial Circuits vs. P

- Is the converse of Proposition 71 true?
- Do polynomial circuits accept only languages in P?
- No.
- Polynomial circuits can accept undecidable languages!

Languages That Polynomial Circuits Accept

- Let $L \subseteq\{0,1\}^{*}$ be an undecidable language.
- Let $U=\left\{1^{n}\right.$: the binary expansion of n is in $\left.L\right\}$. ${ }^{\text {a }}$
- For example, $11111_{1} \in U$ if $101_{2} \in L$.
- U is also undecidable.
- $U \cap\{1\}^{n}$ can be accepted by the trivial circuit C_{n} that outputs 1 if $1^{n} \in U$ and outputs 0 if $1^{n} \notin U$. ${ }^{\text {b }}$
- The family of circuits $\left(C_{0}, C_{1}, \ldots\right)$ is polynomial in size.

[^6]
A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
- Circuits are not a realistic model of computation.
- Polynomial circuits are not a plausible notion of efficient computation.
- What is missing?
- The effective and efficient constructibility of

$$
C_{0}, C_{1}, \ldots
$$

Uniformity

- A family $\left(C_{0}, C_{1}, \ldots\right)$ of circuits is uniform if there is a $\log n$-space bounded TM which on input 1^{n} outputs C_{n}.
- Note that n is the length of the input to C_{n}.
- Circuits now cannot accept undecidable languages (why?).
- The circuit family on p. 566 is not constructible by a single Turing machine (algorithm).
- A language has uniformly polynomial circuits if there is a uniform family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem $72 L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 71 (p. 564).
- Now suppose L has uniformly polynomial circuits.
- A TM decides $x \in L$ in polynomial time as follows:
- Calculate $n=|x|$.
- Generate C_{n} in $\log n$ space, hence polynomial time.
- Evaluate the circuit with input x in polynomial time.
- Therefore $L \in \mathrm{P}$.

Relation to P vs. NP

- Theorem 72 implies that $\mathrm{P} \neq \mathrm{NP}$ if and only if NP-complete problems have no uniformly polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $\mathrm{P} \neq \mathrm{NP}$ conjecture - without success so far.

[^0]: ${ }^{\text {a Adleman }}$ and Manders (1977).

[^1]: ${ }^{\text {a }}$ Rabin (1976) and Solovay and Strassen (1977).
 ${ }^{\mathrm{b}}$ Adleman and Huang (1987).
 ${ }^{c}$ Agrawal, Kayal, and Saxena (2002).

[^2]: ${ }^{\mathrm{a}}$ Gill (1977).

[^3]: ${ }^{\text {a }}$ Herman Chernoff (1923-). The bound is asymptotically optimal.

[^4]: ${ }^{\mathrm{a}}$ Gill (1977).

[^5]: ${ }^{\mathrm{a}}$ Ot did not work for NP either.

[^6]: ${ }^{\text {a }}$ Assume n 's leading bit is always 1 without loss of generality.
 ${ }^{\mathrm{b}}$ We may not know which is the case for general n.

