The Number of Witnesses to Compositeness

Theorem 67 (Solovay and Strassen (1977)) If N is an odd composite, then $(M|N) = M^{(N-1)/2} \mod N$ for at most half of $M \in \Phi(N)$.

- By Lemma 66 (p. 526) there is at least one $a \in \Phi(N)$ such that $(a|N) \neq a^{(N-1)/2} \mod N$.
- Let $B = \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i|N) = b_i^{(N-1)/2} \mod N$.
- Let $aB = \{ab_i \mod N : i = 1, 2, \dots, k\}.$
- Clearly, $aB \subseteq \Phi(N)$, too.

The Proof (concluded)

- $\bullet |aB| = k.$
 - $-ab_i = ab_j \mod N$ implies $N|a(b_i b_j)$, which is impossible because gcd(a, N) = 1 and $N > |b_i b_j|$.
- $aB \cap B = \emptyset$ because

$$(ab_i)^{(N-1)/2} = a^{(N-1)/2}b_i^{(N-1)/2} \neq (a|N)(b_i|N) = (ab_i|N).$$

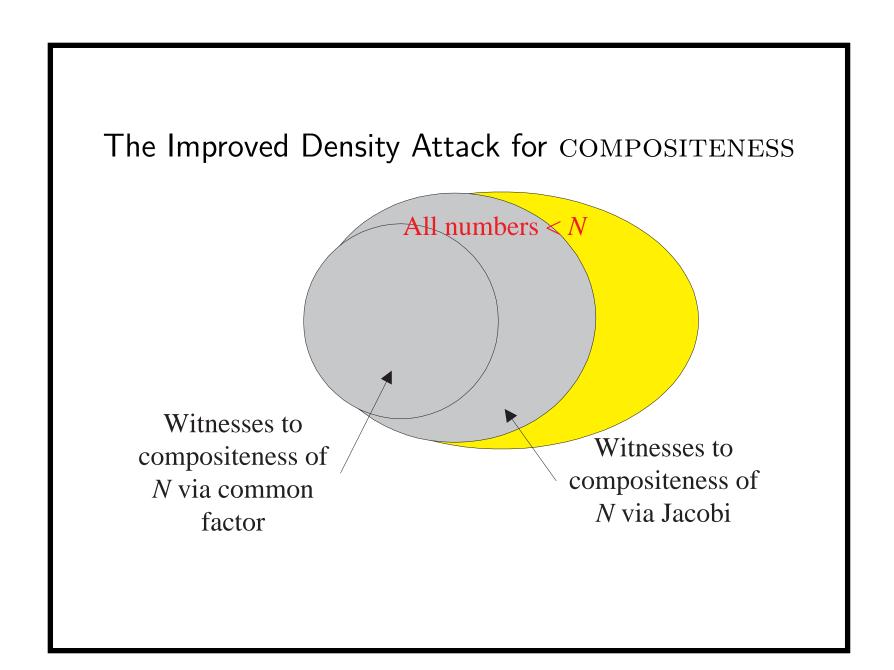
• Combining the above two results, we know

$$\frac{|B|}{\phi(N)} \le \frac{|B|}{|B \cup aB|} = 0.5.$$

```
1: if N is even but N \neq 2 then
     return "N is composite";
 3: else if N=2 then
    return "N is a prime";
 5: end if
6: Pick M \in \{2, 3, ..., N - 1\} randomly;
 7: if gcd(M, N) > 1 then
     return "N is composite";
 9: else
     if (M|N) \neq M^{(N-1)/2} \mod N then
10:
     return "N is composite";
11:
     else
12:
     return "N is a prime";
13:
     end if
14:
15: end if
```

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
 - When the algorithm says the number is composite, it is always correct.
- The probability of a false negative is at most one half.
 - Suppose the input is composite.
 - The probability that the algorithm says the number is a prime is ≤ 0.5 by Theorem 67 (p. 533).
- So it is a Monte Carlo algorithm for Compositeness.



Randomized Complexity Classes; RP

- Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step.
- N is a **polynomial Monte Carlo Turing machine** for a language L if the following conditions hold:
 - If $x \in L$, then at least half of the $2^{p(n)}$ computation paths of N on x halt with "yes" where n = |x|.
 - If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted **RP** (randomized polynomial time).^a

^aAdleman and Manders (1977).

Comments on RP

- In analogy to Proposition 35 (p. 296), a "yes" instance of an RP problem has many certificates (witnesses).
- There are no false positives.
- If we associate nondeterministic steps with flipping fair coins, then we can cast RP in the language of probability.

Comments on RP (concluded)

- The probability of false negatives is $\epsilon \leq 0.5$.
- But any constant between 0 and 1 can replace 0.5.
 - Repeat the algorithm $k = \lceil -\frac{1}{\log_2 \epsilon} \rceil$ times and answer "yes" only if all runs answer "yes."
 - The probability of false negatives becomes $\epsilon^k \leq 0.5$.
- In fact, ϵ can be arbitrarily close to 1 as long as it is at most 1 1/q(n) for some polynomial q(n).

$$- -\frac{1}{\log_2 \epsilon} = O(\frac{1}{1-\epsilon}) = O(q(n)).$$

Where RP Fits

- $P \subseteq RP \subseteq NP$.
 - A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.
 - A Monte Carlo TM is an NTM with extra demands on the number of accepting paths.
- Compositeness $\in RP$; a primes $\in coRP$; primes $\in RP$.
 - In fact, primes $\in P.^c$
- RP \cup coRP is an alternative "plausible" notion of efficient computation.

^aRabin (1976) and Solovay and Strassen (1977).

^bAdleman and Huang (1987).

^cAgrawal, Kayal, and Saxena (2002).

ZPP^a (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $RP \cap coRP$.
- A language in ZPP has *two* Monte Carlo algorithms, one with no false positives and the other with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
 - A positive answer from the one without false positives.
 - A negative answer from the one without false negatives.

^aGill (1977).

The ZPP Algorithm (Las Vegas)

```
1: {Suppose L \in ZPP.}
 2: \{N_1 \text{ has no false positives, and } N_2 \text{ has no false} \}
   negatives.
 3: while true do
      if N_1(x) = \text{"yes"} then
        return "yes";
 6: end if
 7: if N_2(x) = \text{"no"} then
 8: return "no";
      end if
9:
10: end while
```

ZPP (concluded)

- The *expected* running time for the correct answer to emerge is polynomial.
 - The probability that a run of the 2 algorithms does not generate a definite answer is 0.5 (why?).
 - Let p(n) be the running time of each run of the while-loop.
 - The expected running time for a definite answer is

$$\sum_{i=1}^{\infty} 0.5^{i} i p(n) = 2p(n).$$

• Essentially, ZPP is the class of problems that can be solved, without errors, in expected polynomial time.

Large Deviations

- Suppose you have a biased coin.
- One side has probability $0.5 + \epsilon$ to appear and the other 0.5ϵ , for some $0 < \epsilon < 0.5$.
- But you do not know which is which.
- How to decide which side is the more likely side—with high confidence?
- Answer: Flip the coin many times and pick the side that appeared the most times.
- Question: Can you quantify the confidence?

The Chernoff Bound^a

Theorem 68 (Chernoff (1952)) Suppose $x_1, x_2, ..., x_n$ are independent random variables taking the values 1 and 0 with probabilities p and 1-p, respectively. Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$,

$$\text{prob}[X \ge (1+\theta) \, pn] \le e^{-\theta^2 pn/3}.$$

• The probability that the deviate of a **binomial** random variable from its expected value

$$E[X] = E\left[\sum_{i=1}^{n} x_i\right] = pn$$

decreases exponentially with the deviation.

^aHerman Chernoff (1923–). The bound is asymptotically optimal.

The Proof

- Let t be any positive real number.
- Then

$$\operatorname{prob}[X \ge (1+\theta) pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+\theta) pn}].$$

• Markov's inequality (p. 484) generalized to real-valued random variables says that

$$\operatorname{prob}\left[e^{tX} \ge kE[e^{tX}]\right] \le 1/k.$$

• With $k = e^{t(1+\theta) pn} / E[e^{tX}]$, we have

$$\operatorname{prob}[X \ge (1+\theta) \, pn] \le e^{-t(1+\theta) \, pn} E[e^{tX}].$$

The Proof (continued)

• Because $X = \sum_{i=1}^{n} x_i$ and x_i 's are independent,

$$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

• Substituting, we obtain

$$\operatorname{prob}[X \ge (1+\theta) pn] \le e^{-t(1+\theta) pn} [1 + p(e^t - 1)]^n \\
\le e^{-t(1+\theta) pn} e^{pn(e^t - 1)}$$

as
$$(1+a)^n \le e^{an}$$
 for all $a > 0$.

The Proof (concluded)

- With the choice of $t = \ln(1 + \theta)$, the above becomes $\operatorname{prob}[X \geq (1 + \theta) pn] \leq e^{pn[\theta (1 + \theta) \ln(1 + \theta)]}$.
- The exponent expands to $-\frac{\theta^2}{2} + \frac{\theta^3}{6} \frac{\theta^4}{12} + \cdots$ for $0 \le \theta \le 1$, which is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \le \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \le \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.$$

Power of the Majority Rule

From prob[$X \le (1 - \theta) pn$] $\le e^{-\theta^2 pn/2}$ (prove it):

Corollary 69 If $p = (1/2) + \epsilon$ for some $0 \le \epsilon \le 1/2$, then

prob
$$\left[\sum_{i=1}^{n} x_i \le n/2\right] \le e^{-\epsilon^2 n/2}$$
.

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 545) hence demands, e.g., $n \approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability $\leq 2^{-k}$ with the majority rule.

BPP^a (Bounded Probabilistic Polynomial)

- The class **BPP** contains all languages L for which there is a precise polynomial-time NTM N such that:
 - If $x \in L$, then at least 3/4 of the computation paths of N on x lead to "yes."
 - If $x \notin L$, then at least 3/4 of the computation paths of N on x lead to "no."
- So N accepts or rejects by a *clear* majority.

^aGill (1977).

Magic 3/4?

- The number 3/4 bounds the probability (ratio) of a right answer away from 1/2.
- Any constant strictly between 1/2 and 1 can be used without affecting the class BPP.
- In fact, as with RP,

$$\frac{1}{2} + \frac{1}{q(n)}$$

for any polynomial q(n) can be used in place of 3/4 (p. 540).

The Majority Vote Algorithm

Suppose L is decided by N by majority $(1/2) + \epsilon$.

```
1: for i = 1, 2, \dots, 2k + 1 do
```

2: Run N on input x;

3: end for

4: **if** "yes" is the majority answer **then**

5: "yes";

6: **else**

7: "no";

8: end if

Analysis

- The running time remains polynomial, being 2k + 1 times N's running time.
- By Corollary 69 (p. 550), the probability of a false answer is at most $e^{-\epsilon^2 k}$.
- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most 1/4.
- Recall that ϵ can be any inverse polynomial, because k remains polynomial in n.

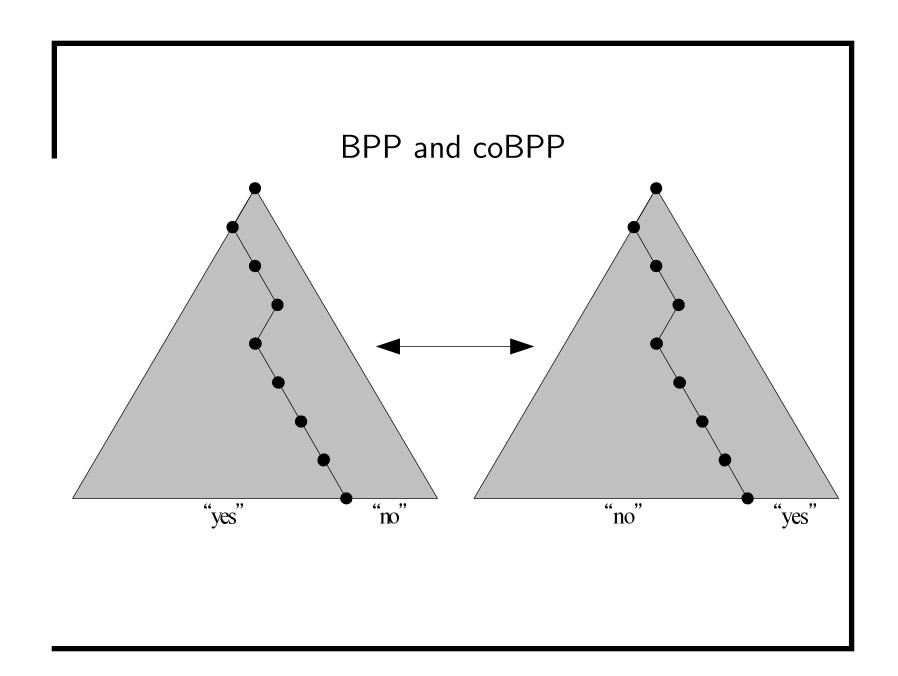
Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
 - If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
 - In this aspect, BPP has effectively replaced P.
- $(RP \cup coRP) \subseteq (NP \cup coNP)$.
- $(RP \cup coRP) \subseteq BPP$.
- Whether BPP \subseteq (NP \cup coNP) is unknown.
- But it is unlikely that $NP \subseteq BPP$ (see p. 571).

coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- An algorithm for $L \in BPP$ becomes one for \overline{L} by reversing the answer.
- So $\bar{L} \in BPP$ and $BPP \subseteq coBPP$.
- Similarly coBPP \subseteq BPP.
- Hence BPP = coBPP.
- This approach does not work for RP.^a

^aOt did not work for NP either.



"The Good, the Bad, and the Ugly" coNP_ ZPP coRP RP · BPP\

Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identifying true/1 with "yes" and false/0 with "no," a boolean circuit with n inputs accepts certain strings in $\{0,1\}^n$.
- To relate circuits with an arbitrary language, we need one circuit for each possible input length n.

Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A family of circuits is an infinite sequence $C = (C_0, C_1, ...)$ of boolean circuits, where C_n has n boolean inputs.
- For input $x \in \{0,1\}^*$, $C_{|x|}$ outputs 1 if and only if $x \in L$.
- In other words,

 C_n accepts $L \cap \{0,1\}^n$.

Formal Definitions (concluded)

- $L \subseteq \{0,1\}^*$ has **polynomial circuits** if there is a family of circuits C such that:
 - The size of C_n is at most p(n) for some fixed polynomial p.
 - C_n accepts $L \cap \{0,1\}^n$.

Exponential Circuits Suffice for All Languages

- Theorem 15 (p. 186) implies that there are languages that cannot be solved by circuits of size $2^n/(2n)$.
- But exponential circuits can solve *all* problems, decidable or otherwise.

Proposition 70 All decision problems (decidable or otherwise) can be solved by a circuit of size 2^{n+2} .

• We will show that for any language $L \subseteq \{0, 1\}^*$, $L \cap \{0, 1\}^n$ can be decided by a circuit of size 2^{n+2} .

The Proof (concluded)

• Define boolean function $f: \{0,1\}^n \to \{0,1\}$, where

$$f(x_1x_2\cdots x_n) = \begin{cases} 1 & x_1x_2\cdots x_n \in L, \\ 0 & x_1x_2\cdots x_n \notin L. \end{cases}$$

- $\bullet f(x_1x_2\cdots x_n)=(x_1\wedge f(1x_2\cdots x_n))\vee (\neg x_1\wedge f(0x_2\cdots x_n)).$
- The circuit size s(n) for $f(x_1x_2\cdots x_n)$ hence satisfies

$$s(n) = 4 + 2s(n-1)$$

with s(1) = 1.

• Solve it to obtain $s(n) = 5 \times 2^{n-1} - 4 \le 2^{n+2}$.

The Circuit Complexity of P

Proposition 71 All languages in P have polynomial circuits.

- Let $L \in P$ be decided by a TM in time p(n).
- By Corollary 32 (p. 282), there is a circuit with $O(p(n)^2)$ gates that accepts $L \cap \{0,1\}^n$.
- The size of the circuit depends only on L and the length of the input.
- The size of the circuit is polynomial in n.

Polynomial Circuits vs. P

- Is the converse of Proposition 71 true?
 - Do polynomial circuits accept only languages in P?
- No.
- Polynomial circuits can accept *undecidable* languages!

Languages That Polynomial Circuits Accept

- Let $L \subseteq \{0,1\}^*$ be an undecidable language.
- Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}$.
 - For example, $11111_1 \in U$ if $101_2 \in L$.
- *U* is also undecidable.
- $U \cap \{1\}^n$ can be accepted by the trivial circuit C_n that outputs 1 if $1^n \in U$ and outputs 0 if $1^n \notin U$.
- The family of circuits (C_0, C_1, \ldots) is polynomial in size.

^aAssume n's leading bit is always 1 without loss of generality.

^bWe may not know which is the case for general n.

A Patch

- Despite the simplicity of a circuit, the previous discussions imply the following:
 - Circuits are *not* a realistic model of computation.
 - Polynomial circuits are *not* a plausible notion of efficient computation.
- What is missing?
- The effective and efficient constructibility of

$$C_0, C_1, \ldots$$

Uniformity

- A family $(C_0, C_1, ...)$ of circuits is **uniform** if there is a $\log n$ -space bounded TM which on input 1^n outputs C_n .
 - Note that n is the length of the input to C_n .
 - Circuits now cannot accept undecidable languages (why?).
 - The circuit family on p. 566 is not constructible by a single Turing machine (algorithm).
- A language has **uniformly polynomial circuits** if there is a *uniform* family of polynomial circuits that decide it.

Uniformly Polynomial Circuits and P

Theorem 72 $L \in P$ if and only if L has uniformly polynomial circuits.

- One direction was proved in Proposition 71 (p. 564).
- Now suppose L has uniformly polynomial circuits.
- A TM decides $x \in L$ in polynomial time as follows:
 - Calculate n = |x|.
 - Generate C_n in $\log n$ space, hence polynomial time.
 - Evaluate the circuit with input x in polynomial time.
- Therefore $L \in P$.

Relation to P vs. NP

- Theorem 72 implies that $P \neq NP$ if and only if NP-complete problems have no *uniformly* polynomial circuits.
- A stronger conjecture: NP-complete problems have no polynomial circuits, uniformly or not.
- The above is currently the preferred approach to proving the $P \neq NP$ conjecture—without success so far.