
The Density Attack for primes

Witnesses to
compositeness

of n

All numbers < n

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 432

The Density Attack for primes

1: Pick k ∈ {1, . . . , n} randomly;

2: if k |n and k ̸= n then

3: return “n is composite”;

4: else

5: return “n is (probably) a prime”;

6: end if

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433

The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the

white area) is ϕ(n)/n.

• When n = pq, where p and q are distinct primes,

ϕ(n)

n
=

pq − p− q + 1

pq
> 1− 1

q
− 1

p
.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 434

The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability about 2/
√
n of

factoring n = pq when p ∼ q = O(
√
n).

– The “density attack” to factor n = pq hence takes

Ω(
√
n) steps on average when p ∼ q = O(

√
n).

– This running time is exponential: Ω(20.5 log2 n).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 435

The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 436

Fermat’s “Little” Theorema

Lemma 55 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = {1, 2, . . . , p− 1}.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.

• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am = am′ mod p for m > m′, where

m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 437

The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p ̸ |(p− 1)!.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 438

The Fermat-Euler Theorema

Corollary 56 For all a ∈ Φ(n), aϕ(n) = 1 mod n.

• The proof is similar to that of Lemma 55 (p. 437).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.

• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 439

The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aϕ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m = aϕ(n)

 ∏
m∈Φ(n)

m

 mod n.

• Finally, aϕ(n) = 1 mod n because n ̸ |
∏

m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 440

An Example

• As 12 = 22 × 3,

ϕ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.

• For example,

54 = 625 = 1 mod 12.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 441

Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and mℓ = 1 mod p, then k|ℓ.
– Otherwise, ℓ = qk + a for 0 < a < k, and

mℓ = mqk+a = ma = 1 mod p, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 442

Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide

p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = {1, 2, . . . , p− 1} that have exponent k.

• We already knew that R(k) = 0 for k ̸ |(p− 1).

• So ∑
k|(p−1)

R(k) = p− 1

as every number has an exponent.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 443

Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,

R(k) ≤ k, by Lemma 57 (p. 442).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all solutions of xk = 1 mod p.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 444

Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick sℓ.

• Suppose ℓ < k and ℓ ̸∈ Φ(k) with gcd(ℓ, k) = d > 1.

• Then

(sℓ)k/d = (sk)ℓ/d = 1 mod p.

• Therefore, sℓ has exponent at most k/d < k.

• We conclude that

R(k) ≤ ϕ(k).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 445

Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

ϕ(k) = p− 1

by Lemma 54 (p. 430).

• Hence

R(k) =

 ϕ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = ϕ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 49 (p. 416).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 446

A Few Calculations

• Let p = 13.

• From p. 439, we know ϕ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = {1, 5, 7, 11},

the primitive roots are

g1, g5, g7, g11

for any primitive root g.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 447

The Other Direction of Theorem 49 (p. 416)

• We show p is a prime if there is a number r such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q ̸= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 448

The Proof (continued)

• So we proceed to show r(p−1)/q = 1 mod p for some

prime divisor q of p− 1.

• rϕ(p) = 1 mod p by the Fermat-Euler theorem (p. 439).

• Because p is not a prime, ϕ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• With the 1st condition, it is easy to show that k | (p− 1)

(similar to p. 442).

• Note that k |ϕ(p) (p. 442).

• As k ≤ ϕ(p), k < p− 1.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 449

The Proof (concluded)

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

• By the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 450

Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 451

Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 452

fsat

• fsat is this function problem:

– Let ϕ(x1, x2, . . . , xn) be a boolean expression.

– If ϕ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 453

An Algorithm for fsat Using sat
1: t := ϵ; {Truth assignment.}
2: if ϕ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if ϕ[xi = true] ∈ sat then

5: t := t ∪ {xi = true };
6: ϕ := ϕ[xi = true];

7: else

8: t := t ∪ {xi = false };
9: ϕ := ϕ[xi = false];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 454

Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than ϕ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction (recall p. 237).

• Instead, it calls sat multiple times as a subroutine and

moves on sat’s outputs.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455

tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

∗ Thus the shortest total distance is less than 2|x | in

magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 456

An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [0, 2| x |] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [i, j] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 457

Analysis

• An edge that is not on any optimal tour will be

eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will

also be eliminated.

• So the algorithm ends with n edges which are not

eliminated (why?).

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(x |).

• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 458

Randomized Computation

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 459

I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 460

Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.b

aRabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 461

“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 462

Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all i ∈ {1, 2, . . . , n}.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 463

A Perfect Matching in a Bipartite Graph

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 464

Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 465

Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 464 is

AG =

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

. (6)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 466

Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (7)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such

that i < j and π(i) > π(j) is even.a

• det(AG) contains n! terms, many of which may be 0s.

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467

Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– All of these summands
∏n

i=1 A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 468

Perfect Matching and Determinant (p. 464)

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 469

Perfect Matching and Determinant (concluded)

• The matrix is (p. 466)

AG =

0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55

.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 470

