The Density Attack for PRIMES

The Density Attack for PRimes

1: Pick $k \in\{1, \ldots, n\}$ randomly;
2: if $k \mid n$ and $k \neq n$ then
3: return " n is composite";
4: else
5: return " n is (probably) a prime";
6: end if

The Density Attack for PRIMES (continued)

- It works, but does it work well?
- The ratio of numbers $\leq n$ relatively prime to n (the white area) is $\phi(n) / n$.
- When $n=p q$, where p and q are distinct primes,

$$
\frac{\phi(n)}{n}=\frac{p q-p-q+1}{p q}>1-\frac{1}{q}-\frac{1}{p} .
$$

The Density Attack for PRIMES (concluded)

- So the ratio of numbers $\leq n$ not relatively prime to n (the grey area) is $<(1 / q)+(1 / p)$.
- The "density attack" has probability about $2 / \sqrt{n}$ of factoring $n=p q$ when $p \sim q=O(\sqrt{n})$.
- The "density attack" to factor $n=p q$ hence takes $\Omega(\sqrt{n})$ steps on average when $p \sim q=O(\sqrt{n})$.
- This running time is exponential: $\Omega\left(2^{0.5 \log _{2} n}\right)$.

The Chinese Remainder Theorem

- Let $n=n_{1} n_{2} \cdots n_{k}$, where n_{i} are pairwise relatively prime.
- For any integers $a_{1}, a_{2}, \ldots, a_{k}$, the set of simultaneous equations

$$
\begin{aligned}
x= & a_{1} \bmod n_{1} \\
x= & a_{2} \bmod n_{2} \\
& \vdots \\
x= & a_{k} \bmod n_{k},
\end{aligned}
$$

has a unique solution modulo n for the unknown x.

Fermat's "Little" Theorem ${ }^{\text {a }}$

Lemma 55 For all $0<a<p, a^{p-1}=1 \bmod p$.

- Recall $\Phi(p)=\{1,2, \ldots, p-1\}$.
- Consider $a \Phi(p)=\{a m \bmod p: m \in \Phi(p)\}$.
- $a \Phi(p)=\Phi(p)$.
$-a \Phi(p) \subseteq \Phi(p)$ as a remainder must be between 1 and $p-1$.
- Suppose $a m=a m^{\prime} \bmod p$ for $m>m^{\prime}$, where $m, m^{\prime} \in \Phi(p)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod p$, and p divides a or $m-m^{\prime}$, which is impossible.

[^0]
The Proof (concluded)

- Multiply all the numbers in $\Phi(p)$ to yield $(p-1)$!.
- Multiply all the numbers in $a \Phi(p)$ to yield $a^{p-1}(p-1)$!.
- As $a \Phi(p)=\Phi(p), a^{p-1}(p-1)!=(p-1)!\bmod p$.
- Finally, $a^{p-1}=1 \bmod p$ because $p \nmid(p-1)$!.

The Fermat-Euler Theorem ${ }^{\text {a }}$

Corollary 56 For all $a \in \Phi(n), a^{\phi(n)}=1 \bmod n$.

- The proof is similar to that of Lemma 55 (p. 437).
- Consider $a \Phi(n)=\{a m \bmod n: m \in \Phi(n)\}$.
- $a \Phi(n)=\Phi(n)$.
$-a \Phi(n) \subseteq \Phi(n)$ as a remainder must be between 0 and $n-1$ and relatively prime to n.
- Suppose $a m=a m^{\prime} \bmod n$ for $m^{\prime}<m<n$, where $m, m^{\prime} \in \Phi(n)$.
- That means $a\left(m-m^{\prime}\right)=0 \bmod n$, and n divides a or $m-m^{\prime}$, which is impossible.
${ }^{\text {a }}$ Proof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on November 24, 2004.

The Proof (concluded) ${ }^{a}$

- Multiply all the numbers in $\Phi(n)$ to yield $\prod_{m \in \Phi(n)} m$.
- Multiply all the numbers in $a \Phi(n)$ to yield $a^{\phi(n)} \prod_{m \in \Phi(n)} m$.
- As $a \Phi(n)=\Phi(n)$,

$$
\prod_{m \in \Phi(n)} m=a^{\phi(n)}\left(\prod_{m \in \Phi(n)} m\right) \bmod n
$$

- Finally, $a^{\phi(n)}=1 \bmod n$ because $n \backslash \prod_{m \in \Phi(n)} m$.

[^1]
An Example

- As $12=2^{2} \times 3$,

$$
\phi(12)=12 \times\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)=4 .
$$

- In fact, $\Phi(12)=\{1,5,7,11\}$.
- For example,

$$
5^{4}=625=1 \bmod 12 .
$$

Exponents

- The exponent of $m \in \Phi(p)$ is the least $k \in \mathbb{Z}^{+}$such that

$$
m^{k}=1 \bmod p
$$

- Every residue $s \in \Phi(p)$ has an exponent.
$-1, s, s^{2}, s^{3}, \ldots$ eventually repeats itself modulo p, say $s^{i}=s^{j} \bmod p$, which means $s^{j-i}=1 \bmod p$.
- If the exponent of m is k and $m^{\ell}=1 \bmod p$, then $k \mid \ell$.
- Otherwise, $\ell=q k+a$ for $0<a<k$, and

$$
m^{\ell}=m^{q k+a}=m^{a}=1 \bmod p, \text { a contradiction. }
$$

Lemma 57 Any nonzero polynomial of degree k has at most k distinct roots modulo p.

Exponents and Primitive Roots

- From Fermat's "little" theorem, all exponents divide $p-1$.
- A primitive root of p is thus a number with exponent $p-1$.
- Let $R(k)$ denote the total number of residues in $\Phi(p)=\{1,2, \ldots, p-1\}$ that have exponent k.
- We already knew that $R(k)=0$ for $k X(p-1)$.
- So

$$
\sum_{k \mid(p-1)} R(k)=p-1
$$

as every number has an exponent.

Size of $R(k)$

- Any $a \in \Phi(p)$ of exponent k satisfies

$$
x^{k}=1 \bmod p
$$

- Hence there are at most k residues of exponent k, i.e., $R(k) \leq k$, by Lemma 57 (p. 442).
- Let s be a residue of exponent k.
- $1, s, s^{2}, \ldots, s^{k-1}$ are distinct modulo p.
- Otherwise, $s^{i}=s^{j} \bmod p$ with $i<j$.
- Then $s^{j-i}=1 \bmod p$ with $j-i<k$, a contradiction.
- As all these k distinct numbers satisfy $x^{k}=1 \bmod p$, they comprise all solutions of $x^{k}=1 \bmod p$.

Size of $R(k)$ (continued)

- But do all of them have exponent k (i.e., $R(k)=k)$?
- And if not (i.e., $R(k)<k$), how many of them do?
- Pick s^{ℓ}.
- Suppose $\ell<k$ and $\ell \notin \Phi(k)$ with $\operatorname{gcd}(\ell, k)=d>1$.
- Then

$$
\left(s^{\ell}\right)^{k / d}=\left(s^{k}\right)^{\ell / d}=1 \bmod p .
$$

- Therefore, s^{ℓ} has exponent at most $k / d<k$.
- We conclude that

$$
R(k) \leq \phi(k) .
$$

Size of $R(k)$ (concluded)

- Because all $p-1$ residues have an exponent,

$$
p-1=\sum_{k \mid(p-1)} R(k) \leq \sum_{k \mid(p-1)} \phi(k)=p-1
$$

by Lemma 54 (p. 430).

- Hence

$$
R(k)=\left\{\begin{array}{cl}
\phi(k) & \text { when } k \mid(p-1) \\
0 & \text { otherwise }
\end{array}\right.
$$

- In particular, $R(p-1)=\phi(p-1)>0$, and p has at least one primitive root.
- This proves one direction of Theorem 49 (p. 416).

A Few Calculations

- Let $p=13$.
- From p. 439, we know $\phi(p-1)=4$.
- Hence $R(12)=4$.
- Indeed, there are 4 primitive roots of p.
- As

$$
\Phi(p-1)=\{1,5,7,11\},
$$

the primitive roots are

$$
g^{1}, g^{5}, g^{7}, g^{11}
$$

for any primitive root g.

The Other Direction of Theorem 49 (p. 416)

- We show p is a prime if there is a number r such that 1. $r^{p-1}=1 \bmod p$, and

2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- Suppose p is not a prime.
- We proceed to show that no primitive roots exist.
- Suppose $r^{p-1}=1 \bmod p($ note $\operatorname{gcd}(r, p)=1)$.
- We will show that the 2 nd condition must be violated.

The Proof (continued)

- So we proceed to show $r^{(p-1) / q}=1 \bmod p$ for some prime divisor q of $p-1$.
- $r^{\phi(p)}=1 \bmod p$ by the Fermat-Euler theorem (p. 439).
- Because p is not a prime, $\phi(p)<p-1$.
- Let k be the smallest integer such that $r^{k}=1 \bmod p$.
- With the 1st condition, it is easy to show that $k \mid(p-1)$ (similar to p. 442).
- Note that $k \mid \phi(p)$ (p. 442).
- As $k \leq \phi(p), k<p-1$.

The Proof (concluded)

- Let q be a prime divisor of $(p-1) / k>1$.
- Then $k \mid(p-1) / q$.
- By the definition of k,

$$
r^{(p-1) / q}=1 \bmod p
$$

- But this violates the 2nd condition.

Function Problems

- Decision problems are yes/no problems (SAT, TSP (D), etc.).
- Function problems require a solution (a satisfying truth assignment, a best TSP tour, etc.).
- Optimization problems are clearly function problems.
- What is the relation between function and decision problems?
- Which one is harder?

Function Problems Cannot Be Easier than Decision Problems

- If we know how to generate a solution, we can solve the corresponding decision problem.
- If you can find a satisfying truth assignment efficiently, then SAT is in P.
- If you can find the best TSP tour efficiently, then TSP (D) is in P .
- But decision problems can be as hard as the corresponding function problems.

FSAT

- FSAT is this function problem:
- Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a boolean expression.
- If ϕ is satisfiable, then return a satisfying truth assignment.
- Otherwise, return "no."
- We next show that if $\operatorname{sat} \in \mathrm{P}$, then FSAT has a polynomial-time algorithm.
- SAT is a subroutine (black box) that returns "yes" or "no" on the satisfiability of the input.

An Algorithm for FsAt Using sat

```
\(t:=\epsilon\); \{Truth assignment.\}
if \(\phi \in\) SAT then
for \(i=1,2, \ldots, n\) do
if \(\phi\left[x_{i}=\right.\) true \(] \in \operatorname{SAT}\) then
\(t:=t \cup\left\{x_{i}=\right.\) true \(\} ;\)
\(\phi:=\phi\left[x_{i}=\right.\) true \(] ;\)
        else
            \(t:=t \cup\left\{x_{i}=\right.\) false \(\} ;\)
            \(\phi:=\phi\left[x_{i}=\mathrm{false}\right] ;\)
            end if
        end for
        return \(t\);
    else
        return "no";
        end if
```


Analysis

- If SAT can be solved in polynomial time, so can FSAT.
- There are $\leq n+1$ calls to the algorithm for SAT. ${ }^{\text {a }}$
- Boolean expressions shorter than ϕ are used in each call to the algorithm for SAT.
- Hence sat and fsat are equally hard (or easy).
- Note that this reduction from fSAT to SAT is not a Karp reduction (recall p. 237).
- Instead, it calls sat multiple times as a subroutine and moves on SAT's outputs.

[^2]
TSP and TSP (D) Revisited

- We are given n cities $1,2, \ldots, n$ and integer distances $d_{i j}=d_{j i}$ between any two cities i and j.
- TSP (D) asks if there is a tour with a total distance at most B.
- TSP asks for a tour with the shortest total distance.
- The shortest total distance is at most $\sum_{i, j} d_{i j}$.
* Recall that the input string contains $d_{11}, \ldots, d_{n n}$.
* Thus the shortest total distance is less than $2^{|x|}$ in magnitude, where x is the input (why?).
- We next show that if TSP $(\mathrm{D}) \in \mathrm{P}$, then tSP has a polynomial-time algorithm.

An Algorithm for TSP Using TSP (D)

1: Perform a binary search over interval [$0,2^{|x|}$] by calling TSP (D) to obtain the shortest distance, C;
2: for $i, j=1,2, \ldots, n$ do
3: \quad Call TSP (D) with $B=C$ and $d_{i j}=C+1$;
4: if "no" then
5: \quad Restore $d_{i j}$ to old value; \{Edge $[i, j]$ is critical. $\}$
6: end if
7: end for
8: return the tour with edges whose $d_{i j} \leq C$;

Analysis

- An edge that is not on any optimal tour will be eliminated, with its $d_{i j}$ set to $C+1$.
- An edge which is not on all remaining optimal tours will also be eliminated.
- So the algorithm ends with n edges which are not eliminated (why?).
- There are $O\left(|x|+n^{2}\right)$ calls to the algorithm for TSP (D).
- Each call has an input length of $O(x \mid)$.
- So if TSP (D) can be solved in polynomial time, so can TSP.
- Hence TSP (D) and TSP are equally hard (or easy).

Randomized Computation

I know that half my advertising works, I just don't know which half. - John Wanamaker

I know that half my advertising is
a waste of money, I just don't know which half!

- McGraw-Hill ad.

Randomized Algorithms ${ }^{\text {a }}$

- Randomized algorithms flip unbiased coins.
- There are important problems for which there are no known efficient deterministic algorithms but for which very efficient randomized algorithms exist.
- Extraction of square roots, for instance.
- There are problems where randomization is necessary.
- Secure protocols.
- Randomized version can be more efficient.
- Parallel algorithm for maximal independent set. ${ }^{\text {b }}$

[^3]
"Four Most Important Randomized Algorithms" a

1. Primality testing. ${ }^{\text {b }}$
2. Graph connectivity using random walks. ${ }^{\text {c }}$
3. Polynomial identity testing. ${ }^{\text {d }}$
4. Algorithms for approximate counting. ${ }^{\text {e }}$
${ }^{\text {a }}$ Trevisan (2006).
${ }^{\mathrm{b}}$ Rabin (1976); Solovay and Strassen (1977).
${ }^{c}$ Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
${ }^{\text {d }}$ Schwartz (1980); Zippel (1979).
${ }^{\mathrm{e}}$ Sinclair and Jerrum (1989).

Bipartite Perfect Matching

- We are given a bipartite graph $G=(U, V, E)$.
$-U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$.
$-V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
- $E \subseteq U \times V$.
- We are asked if there is a perfect matching.
- A permutation π of $\{1,2, \ldots, n\}$ such that

$$
\left(u_{i}, v_{\pi(i)}\right) \in E
$$

for all $i \in\{1,2, \ldots, n\}$.

A Perfect Matching in a Bipartite Graph

Symbolic Determinants

- We are given a bipartite graph G.
- Construct the $n \times n$ matrix A^{G} whose (i, j) th entry $A_{i j}^{G}$ is a symbolic variable $x_{i j}$ if $\left(u_{i}, v_{j}\right) \in E$ and 0 otherwise.

Symbolic Determinants (continued)

- The matrix for the bipartite graph G on p. 464 is

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & x_{14} & 0 \tag{6}\\
0 & x_{22} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & x_{35} \\
x_{41} & 0 & x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right]
$$

Symbolic Determinants (concluded)

- The determinant of A^{G} is

$$
\begin{equation*}
\operatorname{det}\left(A^{G}\right)=\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G} \tag{7}
\end{equation*}
$$

- π ranges over all permutations of n elements.
$-\operatorname{sgn}(\pi)$ is 1 if π is the product of an even number of transpositions and -1 otherwise.
- Equivalently, $\operatorname{sgn}(\pi)=1$ if the number of (i, j) s such that $i<j$ and $\pi(i)>\pi(j)$ is even. ${ }^{\text {a }}$
- $\operatorname{det}\left(A^{G}\right)$ contains n ! terms, many of which may be 0 s.
${ }^{\text {a Contributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, } 2008 . ~}$

Determinant and Bipartite Perfect Matching

- In $\sum_{\pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} A_{i, \pi(i)}^{G}$, note the following:
- Each summand corresponds to a possible perfect matching π.
- All of these summands $\prod_{i=1}^{n} A_{i, \pi(i)}^{G}$ are distinct monomials and will not cancel.
- $\operatorname{det}\left(A^{G}\right)$ is essentially an exhaustive enumeration. Proposition 58 (Edmonds (1967)) G has a perfect matching if and only if $\operatorname{det}\left(A^{G}\right)$ is not identically zero.

Perfect Matching and Determinant (p. 464)

Perfect Matching and Determinant (concluded)

- The matrix is (p. 466)

$$
A^{G}=\left[\begin{array}{ccccc}
0 & 0 & x_{13} & \boxed{x_{14}} & 0 \\
0 & \boxed{x_{22}} & 0 & 0 & 0 \\
x_{31} & 0 & 0 & 0 & \begin{array}{|c}
x_{35} \\
x_{41} \\
0
\end{array} \\
x_{43} & x_{44} & 0 \\
x_{51} & 0 & 0 & 0 & x_{55}
\end{array}\right] .
$$

- $\operatorname{det}\left(A^{G}\right)=-x_{14} x_{22} x_{35} x_{43} x_{51}+x_{13} x_{22} x_{35} x_{44} x_{51}+$ $x_{14} x_{22} x_{31} x_{43} x_{55}-x_{13} x_{22} x_{31} x_{44} x_{55}$.
- Each nonzero term denotes a perfect matching.

[^0]: ${ }^{\text {a }}$ Pierre de Fermat (1601-1665).

[^1]: ${ }^{\text {a }}$ Some typographical errors corrected by Mr. Jung-Ying Chen (D95723006) on November 18, 2008.

[^2]: ${ }^{\text {a }}$ Contributed by Ms. Eva Ou (R93922132) on November 24, 2004.

[^3]: ${ }^{\text {a }}$ Rabin (1976); Solovay and Strassen (1977).
 b"Maximal" (a local maximum) not "maximum" (a global maximum).

