
The Density Attack for primes

Witnesses to
compositeness

of n

All numbers < n
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The Density Attack for primes

1: Pick k ∈ {1, . . . , n} randomly;

2: if k |n and k ̸= n then

3: return “n is composite”;

4: else

5: return “n is (probably) a prime”;

6: end if

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 433



The Density Attack for primes (continued)

• It works, but does it work well?

• The ratio of numbers ≤ n relatively prime to n (the

white area) is ϕ(n)/n.

• When n = pq, where p and q are distinct primes,

ϕ(n)

n
=

pq − p− q + 1

pq
> 1− 1

q
− 1

p
.
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The Density Attack for primes (concluded)

• So the ratio of numbers ≤ n not relatively prime to n

(the grey area) is < (1/q) + (1/p).

– The “density attack” has probability about 2/
√
n of

factoring n = pq when p ∼ q = O(
√
n ).

– The “density attack” to factor n = pq hence takes

Ω(
√
n) steps on average when p ∼ q = O(

√
n ).

– This running time is exponential: Ω(20.5 log2 n).
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The Chinese Remainder Theorem

• Let n = n1n2 · · ·nk, where ni are pairwise relatively

prime.

• For any integers a1, a2, . . . , ak, the set of simultaneous

equations

x = a1 mod n1,

x = a2 mod n2,

...

x = ak mod nk,

has a unique solution modulo n for the unknown x.
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Fermat’s “Little” Theorema

Lemma 55 For all 0 < a < p, ap−1 = 1 mod p.

• Recall Φ(p) = {1, 2, . . . , p− 1}.

• Consider aΦ(p) = {am mod p : m ∈ Φ(p)}.

• aΦ(p) = Φ(p).

– aΦ(p) ⊆ Φ(p) as a remainder must be between 1 and

p− 1.

– Suppose am = am′ mod p for m > m′, where

m,m′ ∈ Φ(p).

– That means a(m−m′) = 0 mod p, and p divides a or

m−m′, which is impossible.

aPierre de Fermat (1601–1665).
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The Proof (concluded)

• Multiply all the numbers in Φ(p) to yield (p− 1)!.

• Multiply all the numbers in aΦ(p) to yield ap−1(p− 1)!.

• As aΦ(p) = Φ(p), ap−1(p− 1)! = (p− 1)! mod p.

• Finally, ap−1 = 1 mod p because p ̸ |(p− 1)!.
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The Fermat-Euler Theorema

Corollary 56 For all a ∈ Φ(n), aϕ(n) = 1 mod n.

• The proof is similar to that of Lemma 55 (p. 437).

• Consider aΦ(n) = {am mod n : m ∈ Φ(n)}.

• aΦ(n) = Φ(n).

– aΦ(n) ⊆ Φ(n) as a remainder must be between 0 and

n− 1 and relatively prime to n.

– Suppose am = am′ mod n for m′ < m < n, where

m,m′ ∈ Φ(n).

– That means a(m−m′) = 0 mod n, and n divides a or

m−m′, which is impossible.
aProof by Mr. Wei-Cheng Cheng (R93922108, D95922011) on Novem-

ber 24, 2004.
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The Proof (concluded)a

• Multiply all the numbers in Φ(n) to yield
∏

m∈Φ(n) m.

• Multiply all the numbers in aΦ(n) to yield

aϕ(n)
∏

m∈Φ(n) m.

• As aΦ(n) = Φ(n),

∏
m∈Φ(n)

m = aϕ(n)

 ∏
m∈Φ(n)

m

 mod n.

• Finally, aϕ(n) = 1 mod n because n ̸ |
∏

m∈Φ(n) m.

aSome typographical errors corrected by Mr. Jung-Ying Chen

(D95723006) on November 18, 2008.
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An Example

• As 12 = 22 × 3,

ϕ(12) = 12×
(
1− 1

2

)(
1− 1

3

)
= 4.

• In fact, Φ(12) = {1, 5, 7, 11}.

• For example,

54 = 625 = 1 mod 12.
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Exponents

• The exponent of m ∈ Φ(p) is the least k ∈ Z+ such that

mk = 1 mod p.

• Every residue s ∈ Φ(p) has an exponent.

– 1, s, s2, s3, . . . eventually repeats itself modulo p, say

si = sj mod p, which means sj−i = 1 mod p.

• If the exponent of m is k and mℓ = 1 mod p, then k|ℓ.
– Otherwise, ℓ = qk + a for 0 < a < k, and

mℓ = mqk+a = ma = 1 mod p, a contradiction.

Lemma 57 Any nonzero polynomial of degree k has at most

k distinct roots modulo p.
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Exponents and Primitive Roots

• From Fermat’s “little” theorem, all exponents divide

p− 1.

• A primitive root of p is thus a number with exponent

p− 1.

• Let R(k) denote the total number of residues in

Φ(p) = {1, 2, . . . , p− 1} that have exponent k.

• We already knew that R(k) = 0 for k ̸ |(p− 1).

• So ∑
k|(p−1)

R(k) = p− 1

as every number has an exponent.
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Size of R(k)

• Any a ∈ Φ(p) of exponent k satisfies

xk = 1 mod p.

• Hence there are at most k residues of exponent k, i.e.,

R(k) ≤ k, by Lemma 57 (p. 442).

• Let s be a residue of exponent k.

• 1, s, s2, . . . , sk−1 are distinct modulo p.

– Otherwise, si = sj mod p with i < j.

– Then sj−i = 1 mod p with j − i < k, a contradiction.

• As all these k distinct numbers satisfy xk = 1 mod p,

they comprise all solutions of xk = 1 mod p.
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Size of R(k) (continued)

• But do all of them have exponent k (i.e., R(k) = k)?

• And if not (i.e., R(k) < k), how many of them do?

• Pick sℓ.

• Suppose ℓ < k and ℓ ̸∈ Φ(k) with gcd(ℓ, k) = d > 1.

• Then

(sℓ)k/d = (sk)ℓ/d = 1 mod p.

• Therefore, sℓ has exponent at most k/d < k.

• We conclude that

R(k) ≤ ϕ(k).
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Size of R(k) (concluded)

• Because all p− 1 residues have an exponent,

p− 1 =
∑

k|(p−1)

R(k) ≤
∑

k|(p−1)

ϕ(k) = p− 1

by Lemma 54 (p. 430).

• Hence

R(k) =

 ϕ(k) when k|(p− 1)

0 otherwise

• In particular, R(p− 1) = ϕ(p− 1) > 0, and p has at least

one primitive root.

• This proves one direction of Theorem 49 (p. 416).
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A Few Calculations

• Let p = 13.

• From p. 439, we know ϕ(p− 1) = 4.

• Hence R(12) = 4.

• Indeed, there are 4 primitive roots of p.

• As

Φ(p− 1) = {1, 5, 7, 11},

the primitive roots are

g1, g5, g7, g11

for any primitive root g.
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The Other Direction of Theorem 49 (p. 416)

• We show p is a prime if there is a number r such that

1. rp−1 = 1 mod p, and

2. r(p−1)/q ̸= 1 mod p for all prime divisors q of p− 1.

• Suppose p is not a prime.

• We proceed to show that no primitive roots exist.

• Suppose rp−1 = 1 mod p (note gcd(r, p) = 1).

• We will show that the 2nd condition must be violated.
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The Proof (continued)

• So we proceed to show r(p−1)/q = 1 mod p for some

prime divisor q of p− 1.

• rϕ(p) = 1 mod p by the Fermat-Euler theorem (p. 439).

• Because p is not a prime, ϕ(p) < p− 1.

• Let k be the smallest integer such that rk = 1 mod p.

• With the 1st condition, it is easy to show that k | (p− 1)

(similar to p. 442).

• Note that k |ϕ(p) (p. 442).

• As k ≤ ϕ(p), k < p− 1.
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The Proof (concluded)

• Let q be a prime divisor of (p− 1)/k > 1.

• Then k|(p− 1)/q.

• By the definition of k,

r(p−1)/q = 1 mod p.

• But this violates the 2nd condition.
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Function Problems

• Decision problems are yes/no problems (sat, tsp (d),

etc.).

• Function problems require a solution (a satisfying

truth assignment, a best tsp tour, etc.).

• Optimization problems are clearly function problems.

• What is the relation between function and decision

problems?

• Which one is harder?
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Function Problems Cannot Be Easier than Decision
Problems

• If we know how to generate a solution, we can solve the

corresponding decision problem.

– If you can find a satisfying truth assignment

efficiently, then sat is in P.

– If you can find the best tsp tour efficiently, then tsp

(d) is in P.

• But decision problems can be as hard as the

corresponding function problems.
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fsat

• fsat is this function problem:

– Let ϕ(x1, x2, . . . , xn) be a boolean expression.

– If ϕ is satisfiable, then return a satisfying truth

assignment.

– Otherwise, return “no.”

• We next show that if sat ∈ P, then fsat has a

polynomial-time algorithm.

• sat is a subroutine (black box) that returns “yes” or

“no” on the satisfiability of the input.
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An Algorithm for fsat Using sat
1: t := ϵ; {Truth assignment.}
2: if ϕ ∈ sat then

3: for i = 1, 2, . . . , n do

4: if ϕ[xi = true ] ∈ sat then

5: t := t ∪ {xi = true };
6: ϕ := ϕ[xi = true ];

7: else

8: t := t ∪ {xi = false };
9: ϕ := ϕ[xi = false ];

10: end if

11: end for

12: return t;

13: else

14: return “no”;

15: end if
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Analysis

• If sat can be solved in polynomial time, so can fsat.

– There are ≤ n+ 1 calls to the algorithm for sat.a

– Boolean expressions shorter than ϕ are used in each

call to the algorithm for sat.

• Hence sat and fsat are equally hard (or easy).

• Note that this reduction from fsat to sat is not a Karp

reduction (recall p. 237).

• Instead, it calls sat multiple times as a subroutine and

moves on sat’s outputs.

aContributed by Ms. Eva Ou (R93922132) on November 24, 2004.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 455



tsp and tsp (d) Revisited

• We are given n cities 1, 2, . . . , n and integer distances

dij = dji between any two cities i and j.

• tsp (d) asks if there is a tour with a total distance at

most B.

• tsp asks for a tour with the shortest total distance.

– The shortest total distance is at most
∑

i,j dij .

∗ Recall that the input string contains d11, . . . , dnn.

∗ Thus the shortest total distance is less than 2|x | in

magnitude, where x is the input (why?).

• We next show that if tsp (d) ∈ P, then tsp has a

polynomial-time algorithm.
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An Algorithm for tsp Using tsp (d)

1: Perform a binary search over interval [ 0, 2| x | ] by calling

tsp (d) to obtain the shortest distance, C;

2: for i, j = 1, 2, . . . , n do

3: Call tsp (d) with B = C and dij = C + 1;

4: if “no” then

5: Restore dij to old value; {Edge [ i, j ] is critical.}
6: end if

7: end for

8: return the tour with edges whose dij ≤ C;
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Analysis

• An edge that is not on any optimal tour will be

eliminated, with its dij set to C + 1.

• An edge which is not on all remaining optimal tours will

also be eliminated.

• So the algorithm ends with n edges which are not

eliminated (why?).

• There are O(|x |+n2) calls to the algorithm for tsp (d).

• Each call has an input length of O(x |).

• So if tsp (d) can be solved in polynomial time, so can

tsp.

• Hence tsp (d) and tsp are equally hard (or easy).
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Randomized Computation
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I know that half my advertising works,

I just don’t know which half.

— John Wanamaker

I know that half my advertising is

a waste of money,

I just don’t know which half!

— McGraw-Hill ad.
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Randomized Algorithmsa

• Randomized algorithms flip unbiased coins.

• There are important problems for which there are no

known efficient deterministic algorithms but for which

very efficient randomized algorithms exist.

– Extraction of square roots, for instance.

• There are problems where randomization is necessary.

– Secure protocols.

• Randomized version can be more efficient.

– Parallel algorithm for maximal independent set.b

aRabin (1976); Solovay and Strassen (1977).
b“Maximal” (a local maximum) not “maximum” (a global maximum).
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“Four Most Important Randomized Algorithms”a

1. Primality testing.b

2. Graph connectivity using random walks.c

3. Polynomial identity testing.d

4. Algorithms for approximate counting.e

aTrevisan (2006).
bRabin (1976); Solovay and Strassen (1977).
cAleliunas, Karp, Lipton, Lovász, and Rackoff (1979).
dSchwartz (1980); Zippel (1979).
eSinclair and Jerrum (1989).
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Bipartite Perfect Matching

• We are given a bipartite graph G = (U, V,E).

– U = {u1, u2, . . . , un}.
– V = {v1, v2, . . . , vn}.
– E ⊆ U × V .

• We are asked if there is a perfect matching.

– A permutation π of {1, 2, . . . , n} such that

(ui, vπ(i)) ∈ E

for all i ∈ {1, 2, . . . , n}.
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A Perfect Matching in a Bipartite Graph

X�

X�

X�

X�

X�

Y�

Y�

Y�

Y�

Y�
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Symbolic Determinants

• We are given a bipartite graph G.

• Construct the n× n matrix AG whose (i, j)th entry AG
ij

is a symbolic variable xij if (ui, vj) ∈ E and 0 otherwise.
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Symbolic Determinants (continued)

• The matrix for the bipartite graph G on p. 464 is

AG =



0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55


. (6)
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Symbolic Determinants (concluded)

• The determinant of AG is

det(AG) =
∑
π

sgn(π)
n∏

i=1

AG
i,π(i). (7)

– π ranges over all permutations of n elements.

– sgn(π) is 1 if π is the product of an even number of

transpositions and −1 otherwise.

– Equivalently, sgn(π) = 1 if the number of (i, j)s such

that i < j and π(i) > π(j) is even.a

• det(AG) contains n! terms, many of which may be 0s.

aContributed by Mr. Hwan-Jeu Yu (D95922028) on May 1, 2008.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 467



Determinant and Bipartite Perfect Matching

• In
∑

π sgn(π)
∏n

i=1 A
G
i,π(i), note the following:

– Each summand corresponds to a possible perfect

matching π.

– All of these summands
∏n

i=1 A
G
i,π(i) are distinct

monomials and will not cancel.

• det(AG) is essentially an exhaustive enumeration.

Proposition 58 (Edmonds (1967)) G has a perfect

matching if and only if det(AG) is not identically zero.
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Perfect Matching and Determinant (p. 464)
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Perfect Matching and Determinant (concluded)

• The matrix is (p. 466)

AG =



0 0 x13 x14 0

0 x22 0 0 0

x31 0 0 0 x35

x41 0 x43 x44 0

x51 0 0 0 x55


.

• det(AG) = −x14x22x35x43x51 + x13x22x35x44x51 +

x14x22x31x43x55 − x13x22x31x44x55.

• Each nonzero term denotes a perfect matching.
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