Theory of Computation

Homework 2

Due: 2012/10/23

Problem 1. Let

 $\phi \equiv \left((a \land \neg b) \lor (\neg c \land d) \right) \Rightarrow \left(e \Rightarrow \neg f \right).$

(a) Turn ϕ into a CNF.

(b) Draw a Boolean circuit for your CNF of ϕ .

Ans:

(a) As $\phi_1 \Rightarrow \phi_2 \equiv \neg \phi_1 \lor \phi_2$,

$$\phi = \neg \left((a \land \neg b) \lor (\neg c \land d) \right) \lor (\neg e \lor \neg f).$$

By De Morgan's laws,

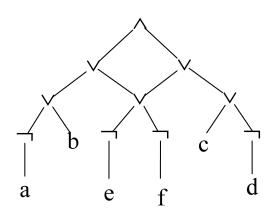
$$\begin{split} \phi &= (\neg (a \land \neg b) \land \neg (\neg c \land d)) \lor (\neg e \lor \neg f) \\ &= ((\neg a \lor b) \land (c \lor \neg d)) \lor (\neg e \lor \neg f) \\ &= ((\neg a \lor b) \lor (\neg e \lor \neg f)) \land ((c \lor \neg d) \lor (\neg e \lor \neg f)) \,. \end{split}$$

Finally, a CNF of ϕ is¹

$$\phi = (\neg a \lor b \lor \neg e \lor \neg f) \land (c \lor \neg d \lor \neg e \lor \neg f).$$

(b) A Boolean circuit is as follows:

¹Your CNF may take a different but equivalent form.



Problem 2. We know that the halting problem

$$H = \{M; x : M(x) \neq \nearrow\}$$

is undecidable. Use this fact to prove that the following language is undecidable:

 $L = \{M : M \text{ is a TM that accepts some input}\}.$

Proof. We prove that L is undecidable by reducing H to L. Suppose L is decidable. For a question about the membership of M; x in H, we construct a TM M_x that simulates M on x. If M halts, then M_x accepts; otherwise, M_x rejects. Note that if M halts on x, then M_x accepts all inputs; otherwise, M_x always diverges. In other words, $M; x \in H$ if and only if $M_x \in L$. So if L were decidable, H would be decidable, a contradiction. Hence, L is undecidable.