
H Is Not Recursivea

• Suppose H is recursive.

• Then there is a TM MH that decides H.

• Consider the program D(M) that calls MH :

1: if MH(M ;M) = “yes” then

2: ↗; {Writing an infinite loop is easy.}
3: else

4: “yes”;

5: end if

aTuring (1936).
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H Is Not Recursive (concluded)

• Consider D(D):

– D(D) =↗⇒ MH(D;D) = “yes” ⇒ D;D ∈ H ⇒
D(D) ̸=↗, a contradiction.

– D(D) = “yes” ⇒ MH(D;D) = “no” ⇒ D;D ̸∈ H ⇒
D(D) =↗, a contradiction.
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Comments

• Two levels of interpretations of M :

– A sequence of 0s and 1s (data).

– An encoding of instructions (programs).

• There are no paradoxes with D(D).

– Concepts should be familiar to computer scientists.

– Feed a C compiler to a C compiler, a Lisp interpreter

to a Lisp interpreter, a sorting program to a sorting

program, etc.
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Cantor’s Paradox (1899a)

• Let T be the set of all sets.b

• Then 2T ⊆ T because 2T is a set.

• But we knowc | 2T | > |T | (p. 128)!

• We got a “contradiction.”

• Are we willing to give up Cantor’s theorem?

• If not, what is a set?

aIn a letter to Richard Dedekind. First published in Russell (1903).
bRecall this ontological argument for the existence of God by

St Anselm (1033–1109) in the 11th century: If something is possible

but is not part of God, then God is not the greatest possible object of

thought, a contradiction.
cReally?
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Self-Loop Paradoxesa

Russell’s Paradox (1901): Consider R = {A : A ̸∈ A}.
• If R ∈ R, then R ̸∈ R by definition.

• If R ̸∈ R, then R ∈ R also by definition.

• In either case, we have a “contradiction.”b

Eubulides: The Cretan says, “All Cretans are liars.”

Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Gödel) with imaginary

symptoms and ailments.
aE.g., Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

(1979) or Quine, The Ways of Paradox and Other Essays (1966).
bGottlob Frege (1848–1925) to Bertrand Russell in 1902, “Your dis-

covery of the contradiction [· · · ] has shaken the basis on which I intended

to build arithmetic.”
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Self-Loop Paradoxes (continued)

Sharon Stone in The Specialist (1994): “I’m not a

woman you can trust.”

Spin City (1996–2002): “I am not gay, but my boyfriend

is.”

Numbers 12:3, Old Testament: “Moses was the most

humble person in all the world [· · · ]” (attributed to

Moses).
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Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 17:21, New Testament: “just as you are in me and

I am in you.”

Pagan & Christian Creeds (1920): “I was moved to

Odin, myself to myself.”

Soren Kierkegaard in Fear and Trembling (1843):

“to strive against the whole world is a comfort, to strive

with oneself is dreadful.”
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Bertrand Russell (1872–1970)

Karl Popper (1974), “per-

haps the greatest philoso-

pher since Kant.”
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Reductions in Proving Undecidability

• Suppose we are asked to prove that L is undecidable.

• Suppose L′ (such as H) is known to be undecidable.

• Find a computable transformation R (called reduction)

from L′ to L such thata

∀x {x ∈ L′ if and only if R(x) ∈ L}.

• Now we can answer “x ∈ L′?” for any x by asking

“R(x) ∈ L?” because they have the same answer.

– L′ is said to be reduced to L.

aContributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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Reductions in Proving Undecidability (concluded)

• If L were decidable, “R(x) ∈ L?” becomes computable

and we have an algorithm to decide L′, a contradiction!

• So L must be undecidable.

Theorem 9 Suppose language L1 can be reduced to

language L2. If L1 is not recursive, then L2 is not recursive.
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More Undecidability

• H∗ = {M : M halts on all inputs}.
– We will reduce H to H∗.

– Given the question “M ;x ∈ H?”, construct the

following machine (this is the reduction):a

Mx(y) : M(x).

– M halts on x if and only if Mx halts on all inputs.

– In other words, M ;x ∈ H if and only if Mx ∈ H∗.

– So if H∗ were recursive, H would be recursive, a

contradiction.
aSimplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.

Mx ignores its input y; x is part of Mx’s code but not Mx’s input.
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More Undecidability (concluded)

• {M ;x : there is a y such that M(x) = y}.

• {M ;x : the computation M on input x uses all states of M}.

• {M ;x; y : M(x) = y}.
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Complements of Recursive Languages

The complement of L, denoted by L̄, is the language

Σ∗ − L.

Lemma 10 If L is recursive, then so is L̄.

• Let L be decided by M , which is deterministic.

• Swap the “yes” state and the “no” state of M .

• The new machine decides L̄.
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Recursive and Recursively Enumerable Languages

Lemma 11 (Kleene’s theorem) L is recursive if and

only if both L and L̄ are recursively enumerable.

• Suppose both L and L̄ are recursively enumerable,

accepted by M and M̄ , respectively.

• Simulate M and M̄ in an interleaved fashion.

• If M accepts, halt on state “yes” because x ∈ L.

• If M̄ accepts, halt on state “no” because x ̸∈ L.

• Note that either M or M̄ must accept the input.
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A Very Useful Corollary and Its Consequences

Corollary 12 L is recursively enumerable but not recursive,

then L̄ is not recursively enumerable.

• Suppose L̄ is recursively enumerable.

• Then both L and L̄ are recursively enumerable.

• By Lemma 11 (p. 148), L is recursive, a contradiction.

Corollary 13 H̄ is not recursively enumerable.a

aRecall that H̄ = {M ;x : M(x) =↗}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

• Note that coRE is not RE.

– coRE = {L : L ∈ RE }.
– RE = {L : L ̸∈ RE }.
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R, RE, and coRE (concluded)

• R = RE ∩ coRE (p. 148).

• There exist languages in RE but not in R and not in

coRE.

– Such as H (p. 134, p. 135, and p. 149).

• There are languages in coRE but not in RE.

– Such as H̄ (p. 149).

• There are languages in neither RE nor coRE.
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R

coRE
RE
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Undecidability in Logic and Mathematics

• First-order logic is undecidable (answer to Hilbert’s

“Entscheidungsproblem” (1928)).a

• Natural numbers with addition and multiplication is

undecidable.b

• Rational numbers with addition and multiplication is

undecidable.c

aChurch (1936).
bRosser (1937).
cRobinson (1948).
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Undecidability in Logic and Mathematics (concluded)

• Natural numbers with addition and equality is decidable

and complete.a

• Elementary theory of groups is undecidable.b

aPresburger’s Master’s thesis (1928), his only work in logic. The

direction was suggested by Tarski. Mojz̄esz Presburger (1904–1943) died

in a concentration camp during World War II.
bTarski (1949).
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Julia Hall Bowman Robinson (1919–1985)
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Alfred Tarski (1901–1983)
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Boolean Logic
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It seemed unworthy of a grown man

to spend his time on such trivialities,

but what was I to do? [· · · ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872–1970),

Autobiography, Vol. I (1967)
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Boolean Logica

Boolean variables: x1, x2, . . ..

Literals: xi, ¬xi.

Boolean connectives: ∨,∧,¬.

Boolean expressions: Boolean variables, ¬ϕ (negation),

ϕ1 ∨ ϕ2 (disjunction), ϕ1 ∧ ϕ2 (conjunction).

•
∨n

i=1 ϕi stands for ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn.

•
∧n

i=1 ϕi stands for ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn.

Implications: ϕ1 ⇒ ϕ2 is a shorthand for ¬ϕ1 ∨ ϕ2.

Biconditionals: ϕ1 ⇔ ϕ2 is a shorthand for

(ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1).

aGeorge Boole (1815–1864) in 1847.
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Truth Assignments

• A truth assignment T is a mapping from boolean

variables to truth values true and false.

• A truth assignment is appropriate to boolean

expression ϕ if it defines the truth value for every

variable in ϕ.

– {x1 = true, x2 = false} is appropriate to x1 ∨ x2.

– {x2 = true, x3 = false} is not appropriate to

x1 ∨ x2.
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Satisfaction

• T |= ϕ means boolean expression ϕ is true under T ; in

other words, T satisfies ϕ.

• ϕ1 and ϕ2 are equivalent, written

ϕ1 ≡ ϕ2,

if for any truth assignment T appropriate to both of

them, T |= ϕ1 if and only if T |= ϕ2.
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Truth Tables

• Suppose ϕ has n boolean variables.

• A truth table contains 2n rows.

• Each row corresponds to one truth assignment of the n

variables and records the truth value of ϕ under that

truth assignment.

• A truth table can be used to prove if two boolean

expressions are equivalent.

– Just check if they give identical truth values under all

appropriate truth assignments.
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A Truth Table

p q p ∧ q

0 0 0

0 1 0

1 0 0

1 1 1
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De Morgan’s Lawsa

• De Morgan’s laws say that

¬(ϕ1 ∧ ϕ2) ≡ ¬ϕ1 ∨ ¬ϕ2,

¬(ϕ1 ∨ ϕ2) ≡ ¬ϕ1 ∧ ¬ϕ2.

• Here is a proof of the first law:

ϕ1 ϕ2 ¬(ϕ1 ∧ ϕ2) ¬ϕ1 ∨ ¬ϕ2

0 0 1 1

0 1 1 1

1 0 1 1

1 1 0 0

aAugustus DeMorgan (1806–1871) or William of Ockham (1288–

1348).
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Conjunctive Normal Forms

• A boolean expression ϕ is in conjunctive normal

form (CNF) if

ϕ =

n∧
i=1

Ci,

where each clause Ci is the disjunction of zero or more

literals.a

– For example,

(x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (x2 ∨ x3).

• Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

aImproved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

• A boolean expression ϕ is in disjunctive normal form

(DNF) if

ϕ =
n∨

i=1

Di,

where each implicant Di is the conjunction of one or

more literals.

– For example,

(x1 ∧ x2) ∨ (x1 ∧ ¬x2) ∨ (x2 ∧ x3).
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Any Expression ϕ Can Be Converted into CNFs and DNFs

ϕ = xj:

• This is trivially true.

ϕ = ¬ϕ1 and a CNF is sought:

• Turn ϕ1 into a DNF.

• Apply de Morgan’s laws to make a CNF for ϕ.

ϕ = ¬ϕ1 and a DNF is sought:

• Turn ϕ1 into a CNF.

• Apply de Morgan’s laws to make a DNF for ϕ.
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Any Expression ϕ Can Be Converted into CNFs and DNFs

(continued)

ϕ = ϕ1 ∨ ϕ2 and a DNF is sought:

• Make ϕ1 and ϕ2 DNFs.

ϕ = ϕ1 ∨ ϕ2 and a CNF is sought:

• Turn ϕ1 and ϕ2 into CNFs,a

ϕ1 =

n1∧
i=1

Ai, ϕ2 =

n2∧
j=1

Bj .

• Set

ϕ =

n1∧
i=1

n2∧
j=1

(Ai ∨Bj).

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression ϕ Can Be Converted into CNFs and DNFs

(concluded)

ϕ = ϕ1 ∧ ϕ2 and a CNF is sought:

• Make ϕ1 and ϕ2 CNFs.

ϕ = ϕ1 ∧ ϕ2 and a DNF is sought:

• Turn ϕ1 and ϕ2 into DNFs,

ϕ1 =

n1∨
i=1

Ai, ϕ2 =

n2∨
j=1

Bj .

• Set

ϕ =

n1∨
i=1

n2∨
j=1

(Ai ∧Bj).
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An Example: Turn ¬((a ∧ y) ∨ (z ∨ w)) into a DNF

¬((a ∧ y) ∨ (z ∨ w))

¬(CNF∨CNF)
= ¬(((a) ∧ (y)) ∨ ((z ∨ w)))

¬(CNF)
= ¬((a ∨ z ∨ w) ∧ (y ∨ z ∨ w))

de Morgan
= ¬(a ∨ z ∨ w) ∨ ¬(y ∨ z ∨ w)

de Morgan
= (¬a ∧ ¬z ∧ ¬w) ∨ (¬y ∧ ¬z ∧ ¬w).
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Satisfiability

• A boolean expression ϕ is satisfiable if there is a truth

assignment T appropriate to it such that T |= ϕ.

• ϕ is valid or a tautology,a written |= ϕ, if T |= ϕ for all

T appropriate to ϕ.

• ϕ is unsatisfiable if and only if ϕ is false under all

appropriate truth assignments if and only if ¬ϕ is valid.

aWittgenstein (1889–1951) in 1922. Wittgenstein is one of the

most important philosophers of all time. “God has arrived,” the great

economist Keynes (1883–1946) said of him on January 18, 1928. “I met

him on the 5:15 train.” Russell (1919), “The importance of ‘tautology’

for a definition of mathematics was pointed out to me by my former

pupil Ludwig Wittgenstein, who was working on the problem. I do not

know whether he has solved it, or even whether he is alive or dead.”
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Ludwig Wittgenstein (1889–1951)

Wittgenstein (1922), “Whereof one

cannot speak, thereof one must be

silent.”
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satisfiability (sat)

• The length of a boolean expression is the length of the

string encoding it.

• satisfiability (sat): Given a CNF ϕ, is it satisfiable?

• Solvable in exponential time on a TM by the truth table

method.

• Solvable in polynomial time on an NTM, hence in NP

(p. 100).

• A most important problem in settling the “P
?
= NP”

problem (p. 282).
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unsatisfiability (unsat or sat complement)
and validity

• unsat (sat complement): Given a boolean expression

ϕ, is it unsatisfiable?

• validity: Given a boolean expression ϕ, is it valid?

– ϕ is valid if and only if ¬ϕ is unsatisfiable.

– ϕ and ¬ϕ are basically of the same length.

– So unsat and validity have the same complexity.

• Both are solvable in exponential time on a TM by the

truth table method.

• Can we do better?
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Relations among sat, unsat, and validity

9DOLG 8QVDWLVILDEOH

• The negation of an unsatisfiable expression is a valid

expression.

• None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.
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Boolean Functions

• An n-ary boolean function is a function

f : {true, false}n → {true, false}.

• It can be represented by a truth table.

• There are 22
n

such boolean functions.

– We can assign true or false to f under each of the

2n truth assignments.
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Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false
...

...

2n true or false
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Boolean Functions (continued)

• A boolean expression expresses a boolean function.

– Think of its truth value under all truth assignments.

• A boolean function expresses a boolean expression.

–
∨

T |= ϕ, literal yi is true in “row” T (y1 ∧ · · · ∧ yn).

∗ y1 ∧ · · · ∧ yn is called the minterm over

{x1, . . . , xn} for T .a

– The sizeb is ≤ n2n ≤ 22n.

aSimilar to programmable logic array.
bWe count only the literals here.
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Boolean Functions (continued)

x1 x2 f(x1, x2)

0 0 1

0 1 1

1 0 0

1 1 1

The corresponding boolean expression:

(¬x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) ∨ (x1 ∧ x2).
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Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2n).

• In general, the exponential length in n cannot be

avoided (p. 186).

• The size of the truth table is also O(n2n).
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Boolean Circuits

• A boolean circuit is a graph C whose nodes are the

gates.

• There are no cycles in C.

• All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

• Each gate has a sort from

{true, false,∨,∧,¬, x1, x2, . . .}.
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Boolean Circuits (concluded)

• Gates with a sort from {true, false, x1, x2, . . .} are the

inputs of C and have an indegree of zero.

• The output gate(s) has no outgoing edges.

• A boolean circuit computes a boolean function.

• The same boolean function can be computed by

infinitely many boolean circuits.
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Boolean Circuits and Expressions

• They are equivalent representations.

• One can construct one from the other:

¬�[L
¬

[L

[L ∨�[M
∨

[L [M

[L ∧�[M
∧

[L [M
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An Example

((x1  x2 ) (x3 x4)) (x3 x4))

x1 x2 x3 x4

• Circuits are more economical because of the possibility

of sharing.
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circuit sat and circuit value

circuit sat: Given a circuit, is there a truth assignment

such that the circuit outputs true?

• circuit sat ∈ NP: Guess a truth assignment and then

evaluate the circuit.

circuit value: The same as circuit sat except that the

circuit has no variable gates.

• circuit value ∈ P: Evaluate the circuit from the input

gates gradually towards the output gate.
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