H Is Not Recursive®
e Suppose H is recursive.

e Then there is a TM My that decides H.

e Consider the program D(M) that calls My:
: if Mg (M; M) = “yes” then
% {Writing an infinite loop is easy.}

44 2

: yes”;
- end if

2Turing (1936).

1
2
3: else
4
5
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H 1s Not Recursive (concluded)

e Consider D(D):

— D(D)=/"= Myg(D;D) = “yes” = D;D € H=
D(D) # 7, a contradiction.

(D)
(D) = “yes” = My (D; D) = “no” = D;D ¢ H =
(D)

7, a contradiction.
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Comments

e T'wo levels of interpretations of M:

— A sequence of Os and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes with D (D).
— Concepts should be familiar to computer scientists.

— Feed a C compiler to a C compiler, a Lisp interpreter
to a Lisp interpreter, a sorting program to a sorting

program, etc.
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Cantor’s Paradox (1899%)
Let T be the set of all sets.P

Then 27 C T because 27 is a set.

But we know® |27 | > |T'| (p. 128)!

We got a “contradiction.”
Are we willing to give up Cantor’s theorem?

e If not, what is a set?

2In a letter to Richard Dedekind. First published in Russell (1903).
PRecall this ontological argument for the existence of God by

St Anselm (1033-1109) in the 11th century: If something is possible
but is not part of God, then God is not the greatest possible object of

thought, a contradiction.
“Really?
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Self-Loop Paradoxes?

Russell’s Paradox (1901): Consider R={A: A& A}.
o If R € R, then R ¢ R by definition.
o If R¢ R, then R € R also by definition.

e In either case, we have a “contradiction.””

Eubulides: The Cretan says, “All Cretans are liars.”
Liar’s Paradox: “This sentence is false.”

Hypochondriac: a patient (like Godel) with imaginary
symptoms and ailments.

a2E.g., Hofstadter, Godel, Escher, Bach: An FEternal Golden Braid
(1979) or Quine, The Ways of Parador and Other Essays (1966).

PGottlob Frege (1848-1925) to Bertrand Russell in 1902, “Your dis-
covery of the contradiction [- - - | has shaken the basis on which I intended
to build arithmetic.”
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Self-Loop Paradoxes (continued)

Sharon Stone in The Specialist (1994): “I'm not a

woman you can trust.”

Spin City (1996—2002): “I am not gay, but my boyfriend

1s.”

Numbers 12:3, Old Testament: “Moses was the most
humble person in all the world [---]|” (attributed to
Moses).
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Self-Loop Paradoxes (concluded)

The Egyptian Book of the Dead: “ye live in me and I

would live in you.”

John 17:21, New Testament: “just as you are in me and

I am in you.”

Pagan € Christian Creeds (1920): “I was moved to
Odin, myself to myself.”

Soren Kierkegaard in Fear and Trembling (1843):

“to strive against the whole world is a comfort, to strive

with oneself is dreadful.”
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Bertrand Russell (1872-1970)

Karl Popper (1974), “per-
haps the greatest philoso-
pher since Kant.”
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Reductions in Proving Undecidability

Suppose we are asked to prove that L is undecidable.
Suppose L’ (such as H) is known to be undecidable.

Find a computable transformation R (called reduction)
from L’ to L such that®

Vo {x € L' if and only if R(x) € L}.

Now we can answer “x € L'?” for any x by asking

“R(x) € L?” because they have the same answer.

— L/ is said to be reduced to L.
2Contributed by Mr. Tai-Dai Chou (J93922005) on May 19, 2005.
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Reductions in Proving Undecidability (concluded)

o If I were decidable, “R(xz) € L?” becomes computable
and we have an algorithm to decide L', a contradiction!

e So L. must be undecidable.

Theorem 9 Suppose language L1 can be reduced to

language Lo. If Ly 1s not recursive, then Lo 1s not recursive.
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More Undecidability

e H* ={M : M halts on all inputs}.
— We will reduce H to H*.

— Given the question “M;x € H?”, construct the
following machine (this is the reduction):®

M halts on z if and only if M, halts on all inputs.
In other words, M;x € H if and only if M, € H*.

So it H* were recursive, H would be recursive, a

contradiction.

2Simplified by Mr. Chih-Hung Hsieh (D95922003) on October 5, 2006.
M, ignores its input y; x is part of M;’s code but not M_,’s input.
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More Undecidability (concluded)
e {M;x : there is a y such that M (zx) = y}.

e {M;x :the computation M on input x uses all states of M }.

o {M;zy:M(z) =y}
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Complements of Recursive Languages

The complement of L, denoted by L, is the language
>* — L.

Lemma 10 If L is recursive, then so is L.
e Let L be decided by M, which is deterministic.
e Swap the “yes” state and the “no” state of M.

e The new machine decides L
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Recursive and Recursively Enumerable Languages

Lemma 11 (Kleene’s theorem) L is recursive if and

only if both L and L are recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

Simulate M and M in an interleaved fashion.
If M accepts, halt on state “yes” because x € L.
If M accepts, halt on state “no” because = & L.

Note that either M or M must accept the input.
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A Very Useful Corollary and Its Consequences

Corollary 12 L s recursively enumerable but not recursive,

then L is not recursively enumerable.
e Suppose L is recursively enumerable.
e Then both L and L are recursively enumerable.
e By Lemma 11 (p. 148), L is recursive, a contradiction.

Corollary 13 H is not recursively enumerable.?

2Recall that H = {M;x : M (x) = "}.
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable.

R: The set of all recursive languages.

e Note that coRE is not RE.
— coRE={L:LecRE}.
—ﬁ:{L:LQRE}.
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R, RE, and coRE (concluded)
R = RE N coRE (p. 148).

There exist languages in RE but not in R and not in
coRE.

— Such as H (p. 134, p. 135, and p. 149).

There are languages in coRE but not in RE.

— Such as H (p. 149).

There are languages in neither RE nor coRE.
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Undecidability in Logic and Mathematics

e First-order logic is undecidable (answer to Hilbert’s
“Entscheidungsproblem” (1928)).2

e Natural numbers with addition and multiplication is
undecidable.”

e Rational numbers with addition and multiplication is

undecidable.€

2Church (1936).

PRosser (1937).
“Robinson (1948).
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Undecidability in Logic and Mathematics (concluded)

e Natural numbers with addition and equality is decidable

and complete.?

e Elementary theory of groups is undecidable.”

2Presburger’s Master’s thesis (1928), his only work in logic. The
direction was suggested by Tarski. Mojzesz Presburger (1904—1943) died

in a concentration camp during World War II.
PTarski (1949).
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Julia Hall Bowman Robinson (1919-1985)
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Alfred Tarski (1901-1983)
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Boolean Logic
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It seemed unworthy of a grown man

to spend his time on such trivialities,
but what was I to do? [-- ]
The whole of the rest of my life might be

consumed in looking at

that blank sheet of paper.

— Bertrand Russell (1872-1970),
Autobiography, Vol. 1 (1967)
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Boolean Logic*

Boolean variables: xi,z2,....
Literals: z;, —x;.
Boolean connectives: V, A, —.

Boolean expressions: Boolean variables, —¢ (negation),

1V ¢2 (disjunction), ¢1 A ¢2 (conjunction).
o \/_, @i stands for ¢1 Vg2 V-V ¢y.
o A\._, ¢: stands for ¢p1 A2 A -+ A ¢y

Implications: ¢; = ¢2 is a shorthand for —¢1 V ¢2.

Biconditionals: ¢; < ¢2 is a shorthand for
(¢1 = ¢2) A (92 = ¢1).
2George Boole (1815-1864) in 1847.
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Truth Assignments

e A truth assignment T is a mapping from boolean

variables to truth values true and false.

e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every
variable in ¢.

— {z1 = true,xo = false} is appropriate to x1 V xs.

— {z9 = true,x3 = false} is not appropriate to

L1 V 9.
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Satisfaction

e T = ¢ means boolean expression ¢ is true under T’ in
other words, 1" satisfies ¢.

e ¢ and ¢, are equivalent, written

P1 = Po,

if for any truth assignment 7" appropriate to both of
them, T' |= ¢ if and only if T' = ¢s.
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Truth Tables

Suppose ¢ has n boolean variables.
A truth table contains 2" rows.

Each row corresponds to one truth assignment of the n
variables and records the truth value of ¢ under that

truth assignment.

A truth table can be used to prove if two boolean

expressions are equivalent.

— Just check if they give identical truth values under all

appropriate truth assignments.
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A Truth Table

pPAgq
0
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De Morgan's Laws®
e De Morgan’s laws say that

(P11 AP2) = g1V e,
(g1 V ¢2) —¢1 N\ 2.

e Here is a proof of the first law:

P11 P2 | (D1 Ad2) —P1V o
1

0
0
1
1

0

1 1
0 1
1 0

2Augustus DeMorgan (1806—-1871) or William of Ockham (1288-
1348).
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Conjunctive Normal Forms

e A boolean expression ¢ is in conjunctive normal
form (CNF) if

6= N\ Ci
i=1

where each clause C; is the disjunction of zero or more

literals.?

— For example,
(212‘1 V 332) A\ (xl V _lxg) A\ (ZCQ V 1‘3).

e Convention: An empty CNF is satisfiable, but a CNF

containing an empty clause is not.

Improved by Mr. Aufbu Huang (R95922070) on October 5, 2006.
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Disjunctive Normal Forms

e A boolean expression ¢ is in disjunctive normal form
(DNF) if

¢=\/ D,
i=1

where each implicant D, is the conjunction of one or

more literals.

— For example,

(5131 A\ CCQ) V (5131 A\ —lilfg) V (%2 AN $3).
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Any Expression ¢ Can Be Converted into CNFs and DNFs

O = x;:
e This is trivially true.

= -¢; and a CNF is sought:
e Turn ¢; into a DNF.

e Apply de Morgan’s laws to make a CNF for ¢.

¢ = —¢1; and a DNF is sought:
e Turn ¢, into a CNF.

e Apply de Morgan’s laws to make a DNF for ¢.
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Any Expression ¢ Can Be Converted into CNFs and DNFs
(continued)

®» = ¢1 V ¢o and a DNF is sought:
e Make ¢1 and ¢o DNF's.

®» = ¢1 V ¢o and a CNF is sought:
e Turn ¢; and ¢, into CNFs,?

/\Az, Gy = /\B

niy no2

o= N\ N\ AV B)).

i=14=1

aCorrected by Mr. Chun-Jie Yang (R99922150) on November 9, 2010.
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Any Expression ¢ Can Be Converted into CNFs and DNFs
(concluded)

®» = ¢1 A ¢ and a CNF is sought:
e Make ¢; and ¢ CNFs.

®» = ¢1 N ¢ and a DNF is sought:
e Turn ¢; and ¢, into DNF's,

\/Az, G2 = \/B

niy mna2

o=\ (4 A B))

i=14=1
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An Example: Turn =((a Ay) V (2 Vw)) into a DNF

“((aANy)V
~(CNFVCNF)

-1

(aVzVw)A
de Morgan

(
(((a
~(CNF) (
(

aVzVw)V-(yVzVw)

WCAEM (Cg Az A )V (my Az A ).
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Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth
assignment T appropriate to it such that T = ¢.

e ¢ is valid or a tautology,* written = ¢, if T' = ¢ for all
I" appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all
appropriate truth assignments if and only if —¢ is valid.

*Wittgenstein (1889-1951) in 1922. Wittgenstein is one of the
most important philosophers of all time. “God has arrived,” the great
economist Keynes (1883-1946) said of him on January 18, 1928. “I met
him on the 5:15 train.” Russell (1919), “The importance of ‘tautology’
for a definition of mathematics was pointed out to me by my former
pupil Ludwig Wittgenstein, who was working on the problem. I do not
know whether he has solved it, or even whether he is alive or dead.”
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Ludwig Wittgenstein (1889-1951)

Wittgenstein (1922), “Whereof one
cannot speak, thereof one must be

silent.”
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SATISFIABILITY (SAT)

The length of a boolean expression is the length of the
string encoding it.

SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

Solvable in exponential time on a TM by the truth table
method.

Solvable in polynomial time on an NTM, hence in NP
(p- 100).

A most important problem in settling the “P ~ NP”
problem (p. 282).
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UNSATISFIABILITY (UNSAT or SAT COMPLEMENT)
and VALIDITY

UNSAT (SAT COMPLEMENT): Given a boolean expression
@, is it unsatisfiable?

VALIDITY: Given a boolean expression ¢, is it valid?

— ¢ is valid if and only if —¢ is unsatisfiable.

— ¢ and —¢ are basically of the same length.

— So UNSAT and VALIDITY have the same complexity.

Both are solvable in exponential time on a TM by the
truth table method.

Can we do better?
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Relations among SAT, UNSAT, and VALIDITY

T

Unsatisfiable

\—/

e The negation of an unsatisfiable expression is a valid

expression.

e None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.
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Boolean Functions

e An n-ary boolean function is a function

f:{true,false}"” — {true,false}.

e It can be represented by a truth table.

e There are 22" such boolean functions.

— We can assign true or false to f under each of the
2™ truth assignments.
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Boolean Functions (continued)

Assignment Truth value

1 true or false

2 true or false

true or false
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Boolean Functions (continued)

e A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.

e A boolean function expresses a boolean expression.

- \/T = ¢, literal y; is true in “row” T(yl ARERNA yn)
x Y1 N\ -+ ANy is called the minterm over
{x1,...,z,} for T.?

— The sizeP is < n2" < 227,

aSimilar to programmable logic array.
PWe count only the literals here.
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Boolean Functions (continued)

L1

L2

f(331, 33’2)

0
0
1
1

0
1
0
1

1

1
0
1

The corresponding boolean expression:

(_15131 A\ —11132) V (_132‘1 A\ 332) V (xl A\ 332).
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Boolean Functions (concluded)

Corollary 14 Every n-ary boolean function can be

expressed by a boolean expression of size O(n2").

e In general, the exponential length in n cannot be
avoided (p. 186).

e The size of the truth table is also O(n2").
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Boolean Circuits

A boolean circuit is a graph C whose nodes are the
gates.

There are no cycles in C.

All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

Each gate has a sort from

{true,false,V, A\, 0, 21, Z2,...}.
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Boolean Circuits (concluded)

Gates with a sort from {true,false,x1,xo,...} are the

inputs of C' and have an indegree of zero.
The output gate(s) has no outgoing edges.
A boolean circuit computes a boolean function.

The same boolean function can be computed by

infinitely many boolean circuits.

©2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 182



Boolean Circuits and Expressions

e They are equivalent representations.

e One can construct one from the other:
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An Example

(1A X2 )A(X3V X4)) V (—(x3V X4))

A

e Circuits are more economical because of the possibility
of sharing.
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CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment
such that the circuit outputs true?

e CIRCUIT SAT € NP: Guess a truth assignment and then
evaluate the circuit.

CIRCUIT VALUE: The same as CIRCUIT SAT except that the
circuit has no variable gates.

e CIRCUIT VALUE € P: Evaluate the circuit from the input

gates gradually towards the output gate.
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