Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.
Theorem 4 Suppose language L is decided by an NTM N in time $f(n)$. Then it is decided by a 3-string deterministic $T M M$ in time $O\left(c^{f(n)}\right)$, where $c>1$ is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search.
- M does not need to know $f(n)$.
- As N is time-bounded, the depth-first search will not run indefinitely.

The Proof (concluded)

- If any path leads to "yes," then M immediately enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.
- The simulation takes time $O\left(c^{f(n)}\right)$ for some $c>1$ because the computation tree has that many nodes.

Corollary $5 \operatorname{NTIME}(f(n))) \subseteq \bigcup_{c>1} \operatorname{TIME}\left(c^{f(n)}\right)$.

NTIME vs. TIME

- Does converting an NTM into a TM require exploring all computation paths of the NTM as done in Theorem 4 (p. 97)?
- This is the most important question in theory with important practical implications.

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "yes";
7: else
8: "no";
9: end if

Computation Tree for Satisfiability

Analysis

- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is satisfiable iff there is a truth assignment that satisfies ϕ.

Analysis (concluded)

- The algorithm decides language $\{\phi: \phi$ is satisfiable $\}$.
- Suppose ϕ is satisfiable.
- That means there is a truth assignment that satisfies ϕ.
- So there is a computation path that results in "yes."
- Suppose ϕ is not satisfiable.
- That means every truth assignment makes ϕ false.
- So every computation path results in "no."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities $1,2, \ldots, n$ and integer distance $d_{i j}$ between any two cities i and j.
- Assume $d_{i j}=d_{j i}$ for convenience.
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input. ${ }^{\text {a }}$

[^0]```
 A Nondeterministic Algorithm for TSP (D)
 1: for }i=1,2,\ldots,n\mathrm{ do
```



```
 3: end for
 4: }\mp@subsup{x}{n+1}{}:=\mp@subsup{x}{1}{}
 5: {Verification:}
 6: if }\mp@subsup{x}{1}{},\mp@subsup{x}{2}{},\ldots,\mp@subsup{x}{n}{}\mathrm{ are distinct and }\mp@subsup{\sum}{i=1}{n}\mp@subsup{d}{\mp@subsup{x}{i}{},\mp@subsup{x}{i+1}{}}{}\leqB\mathrm{ then
 7: "yes";
 8: else
 9: "no";
10: end if
```

    \({ }^{\text {a }}\) Can be made into a series of \(\log _{2} n\) binary choices for each \(x_{i}\) so
    that the next-state count (2) is a constant, independent of input size.
Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

## Analysis

- Suppose the input graph contains at least one tour of the cities with a total distance at most $B$.
- Then there is a computation path that leads to "yes."a
- Suppose the input graph contains no tour of the cities with a total distance at most $B$.
- Then every computation path leads to "no."
${ }^{\text {a }}$ It does not mean the algorithm will follow that path. It just means such a computation path exists.


## Remarks on the $\mathrm{P} \stackrel{?}{=}$ NP Open Problem ${ }^{\text {a }}$

- Many practical applications depend on answers to the $\mathrm{P} \stackrel{?}{=} \mathrm{NP}$ question.
- Verification of password is easy (so it is in NP).
- A computer should not take a long time to let a user $\log$ in.
- A password system should be hard to crack (loosely speaking, cracking it should not be in P ).
${ }^{\text {a }}$ Contributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on September 27, 2011.


## Nondeterministic Space Complexity Classes

- Let $L$ be a language.
- Then

$$
L \in \operatorname{NSPACE}(f(n))
$$

if there is an NTM with input and output that decides $L$ and operates within space bound $f(n)$.

- NSPACE $(f(n))$ is a set of languages.
- As in the linear speedup theorem (Theorem 3 on p. 75), constant coefficients do not matter.


## Graph Reachability

- Let $G(V, E)$ be a directed graph (digraph).
- REAChability asks if, given nodes $a$ and $b$, does $G$ contain a path from $a$ to $b$ ?
- Can be easily solved in polynomial time by breadth-first search.
- How about its nondeterministic space complexity?

The First Try: $\operatorname{NSPACE}(n \log n)$
1: $x_{1}:=a ;$ Assume $a \neq b$.\}
2: for $i=2,3, \ldots, n$ do
3: Guess $x_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The $i$ th node. $\}$
4: end for
5: for $i=2,3, \ldots, n$ do
6: if $\left(x_{i-1}, x_{i}\right) \notin E$ then
7: "no";
8: end if
9: if $x_{i}=b$ then
10: "yes";
11: end if
12: end for
13: "no";

## In Fact, Reachability $\in \operatorname{NSPACE}(\log n)$

1: $x:=a$;
2: for $i=2,3, \ldots, n$ do
3: Guess $y \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} ;\{$ The next node. $\}$
4: $\quad$ if $(x, y) \notin E$ then
5: "no";
6: end if
7: $\quad$ if $y=b$ then
8: "yes";
9: end if
10: $\quad x:=y ;$
11: end for
12: "no";

## Space Analysis

- Variables $i, x$, and $y$ each require $O(\log n)$ bits.
- Testing $(x, y) \in E$ is accomplished by consulting the input string with counters of $O(\log n)$ bits long.
- Hence

$$
\text { REACHABILITY } \in \text { NSPACE }(\log n) .
$$

- REACHABILITY with more than one terminal node also has the same complexity.
- Reachability $\in \mathrm{P}(\mathrm{p} .211)$.


## Undecidability

God exists since mathematics is consistent, and the Devil exists since we cannot prove it. - André Weil (1906-1998)

Whatsoever we imagine is finite. Therefore there is no idea, or conception of any thing we call infinite.

- Thomas Hobbes (1588-1679), Leviathan


## Infinite Sets

- A set is countable if it is finite or if it can be put in one-one correspondence with $\mathbb{N}=\{0,1, \ldots\}$, the set of natural numbers.
- Set of integers $\mathbb{Z}$.

$$
* 0 \leftrightarrow 0
$$

$$
* 1 \leftrightarrow 1,2 \leftrightarrow 3,3 \leftrightarrow 5, \ldots .
$$

$$
*-1 \leftrightarrow 2,-2 \leftrightarrow 4,-3 \leftrightarrow 6, \ldots
$$

- Set of positive integers $\mathbb{Z}^{+}: i \leftrightarrow i-1$.
- Set of positive odd integers: $i \leftrightarrow(i-1) / 2$.
- Set of (positive) rational numbers: See next page.
- Set of squared integers: $i \leftrightarrow \sqrt{i}$.


## Rational Numbers Are Countable



## Cardinality

- For any set $A$, define $|A|$ as $A$ 's cardinality (size).
- Two sets are said to have the same cardinality, or

$$
|A|=|B| \quad \text { or } \quad A \sim B,
$$

if there exists a one-to-one correspondence between their elements.

- $2^{A}$ denotes set $A$ 's power set, that is $\{B: B \subseteq A\}$.
- E.g., $\{0,1\}$ 's power set is $2^{\{0,1\}}=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.
- If $|A|=k$, then $\left|2^{A}\right|=2^{k}$.


## Cardinality (concluded)

- Define $|A| \leq|B|$ if there is a one-to-one correspondence between $A$ and a subset of $B$ 's.
- Obviously, if $A \subseteq B$, then $|A| \leq|B|$.
- So $|\mathbb{N}| \leq|\mathbb{Z}|$.
- So $|\mathbb{N}| \leq|\mathbb{R}|$.
- Define $|A|<|B|$ if $|A| \leq|B|$ but $|A| \neq|B|$.
- If $A \subsetneq B$, then $|A|<|B|$ ?


## Cardinality and Infinite Sets

- If $A$ and $B$ are infinite sets, it is possible that $A \subsetneq B$ yet $|A|=|B|$.
- The set of integers properly contains the set of odd integers.
- But the set of integers has the same cardinality as the set of odd integers (p. 115). ${ }^{\text {a }}$
- A lot of "paradoxes."

[^1]
## Galileo's ${ }^{a}$ Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid ${ }^{\text {b }}$ that the whole is greater than any of its proper parts. ${ }^{\text {c }}$
- Resolution of paradoxes: Pick the notion that results in "better" mathematics.
- The difference between a mathematical paradox and a contradiction is often a matter of opinions.

```
a}\mathrm{ a Galileo (1564-1642).
b}\mathrm{ Euclid (325 B.C.-265 B.C.).
c}\mp@subsup{}{}{c}Leibniz never challenges that axiom (Knobloch, 1999).
```


## Hilbert's ${ }^{\text {a }}$ Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now imagine a hotel with an infinite number of rooms, all of which are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor.
- He moves the person previously occupying Room 1 to Room 2, the person from Room 2 to Room 3, and so on.
- The new customer now occupies Room 1.

[^2]
## Hilbert's Paradox of the Grand Hotel (concluded)

- Now imagine a hotel with an infinite number of rooms, all taken up.
- An infinite number of new guests come in and ask for rooms.
- "Certainly," says the proprietor.
- He moves the occupant of Room 1 to Room 2, the occupant of Room 2 to Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)


## David Hilbert (1862-1943)



## Cantor's Theorem

Theorem 6 The set of all subsets of $\mathbb{N}\left(2^{\mathbb{N}}\right)$ is infinite and not countable.

- Suppose $\left(2^{\mathbb{N}}\right)$ is countable with $f: \mathbb{N} \rightarrow 2^{\mathbb{N}}$ being a bijection. ${ }^{\text {a }}$
- Consider the set $B=\{k \in \mathbb{N}: k \notin f(k)\} \subseteq \mathbb{N}$.
- Suppose $B=f(n)$ for some $n \in \mathbb{N}$.

[^3]
## The Proof (concluded)

- If $n \in f(n)=B$, then $n \in B$, but then $n \notin B$ by $B$ 's definition.
- If $n \notin f(n)=B$, then $n \notin B$, but then $n \in B$ by $B$ 's definition.
- Hence $B \neq f(n)$ for any $n$.
- $f$ is not a bijection, a contradiction.


## Georg Cantor (1845-1918)

Kac and Ulam (1968), "[If] one had to name a single person whose work has had the most decisive influence on the present spirit of mathematics, it would almost surely be Georg Cantor."


Cantor's Diagonalization Argument Illustrated


## A Corollary of Cantor's Theorem

Corollary $\mathbf{7}$ For any set $T$, finite or infinite,

$$
|T|<\left|2^{T}\right| .
$$

- The inequality holds in the finite $T$ case as $k<2^{k}$.
- Assume $T$ is infinite now.
- To prove $|T| \leq\left|2^{T}\right|$, simply consider $f(x)=\{x\} \in 2^{T}$.
- $f$ maps a member of $T=\{a, b, c, \ldots\}$ to a corresponding member of $\{\{a\},\{b\},\{c\}, \ldots\} \subseteq 2^{T}$.
- To prove the strict inequality $|T| \lesseqgtr\left|2^{T}\right|$, we use the same argument as Cantor's theorem.


## A Second Corollary of Cantor's Theorem

Corollary 8 The set of all functions on $\mathbb{N}$ is not countable.

- It suffices to prove it for functions from $\mathbb{N}$ to $\{0,1\}$.
- Every function $f: \mathbb{N} \rightarrow\{0,1\}$ determines a subset of $\mathbb{N}$ :

$$
\{n: f(n)=1\} \subseteq \mathbb{N},
$$

and vice versa.

- So the set of functions from $\mathbb{N}$ to $\{0,1\}$ has cardinality $\left|2^{\mathbb{N}}\right|$.
- Cantor's theorem (p. 124) then implies the claim.


## Existence of Uncomputable Problems

- Every program is a finite sequence of 0 s and 1 s , thus a nonnegative integer. ${ }^{\text {a }}$
- Hence every program corresponds to some integer.
- The set of programs is countable.
${ }^{\text {a }}$ Different binary strings may be mapped to the same integer (e.g., "001" and "01"). To prevent it, use the lexicographic order as the mapping or simply insert " 1 " as the most significant bit of the binary string before the mapping (so "001" becomes "1001"). Contributed by Mr. Yu-Chih Tung (R98922167) on October 5, 2010.


## Existence of Uncomputable Problems (concluded)

- A function is a mapping from integers to integers.
- The set of functions is not countable by Corollary 8 (p. 129).
- So there are functions for which no programs exist. ${ }^{\text {a }}$

[^4]
## Universal Turing Machine ${ }^{\text {a }}$

- A universal Turing machine $U$ interprets the input as the description of a TM $M$ concatenated with the description of an input to that machine, $x$.
- Both $M$ and $x$ are over the alphabet of $U$.
- $U$ simulates $M$ on $x$ so that

$$
U(M ; x)=M(x) .
$$

- $U$ is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

[^5]
## The Halting Problem

- Undecidable problems are problems that have no algorithms.
- Equivalently, they are languages that are not recursive.
- We knew undecidable problems exist (p. 130).
- We now define a concrete undecidable problem, the halting problem:

$$
H=\{M ; x: M(x) \neq \nearrow\} .
$$

- Does $M$ halt on input $x$ ?


## H Is Recursively Enumerable

- Use the universal TM $U$ to simulate $M$ on $x$.
- When $M$ is about to halt, $U$ enters a "yes" state.
- If $M(x)$ diverges, so does $U$.
- This TM accepts $H$.


[^0]:    ${ }^{\text {a }}$ Both problems are extremely important and are equally hard (p. 354 and p. 447).

[^1]:    a Leibniz uses it to "prove" that there are no infinite numbers (Russell, 1914).

[^2]:    ${ }^{\text {a }}$ David Hilbert (1862-1943).

[^3]:    ${ }^{\text {a }}$ Note that $f(k)$ is a subset of $\mathbb{N}$.

[^4]:    ${ }^{\text {a }}$ As a nondeterministic program may not compute a function, we consider only deterministic programs for this sentence. Contributed by Mr. Patrick Will (A99725101) on October 5, 2010.

[^5]:    a Turing (1936).

