
Simulating Nondeterministic TMs

Nondeterminism does not add power to TMs.

Theorem 4 Suppose language L is decided by an NTM N

in time f(n). Then it is decided by a 3-string deterministic

TM M in time O(cf(n)), where c > 1 is some constant

depending on N .

• On input x, M goes down every computation path of N

using depth-first search.

– M does not need to know f(n).

– As N is time-bounded, the depth-first search will not

run indefinitely.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 97

The Proof (concluded)

• If any path leads to “yes,” then M immediately enters

the “yes” state.

• If none of the paths leads to “yes,” then M enters the

“no” state.

• The simulation takes time O(cf(n)) for some c > 1

because the computation tree has that many nodes.

Corollary 5 NTIME(f(n))) ⊆
∪

c>1 TIME(cf(n)).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 98

NTIME vs. TIME

• Does converting an NTM into a TM require exploring

all computation paths of the NTM as done in Theorem 4

(p. 97)?

• This is the most important question in theory with

important practical implications.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 99

A Nondeterministic Algorithm for Satisfiability

ϕ is a boolean formula with n variables.

1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {0, 1}; {Nondeterministic choice.}
3: end for

4: {Verification:}
5: if ϕ(x1, x2, . . . , xn) = 1 then

6: “yes”;

7: else

8: “no”;

9: end if

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 100

Computation Tree for Satisfiability

Ø\HVÙØQRÙ ØQRÙØ\HVÙØ\HVÙ Ø\HVÙØQRÙØQRÙØQRÙ

[� �
[� �
[� �

[� �
[� �

[� �
[� �

[� �

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 101

Analysis

• The computation tree is a complete binary tree of depth

n.

• Every computation path corresponds to a particular

truth assignment out of 2n.

• ϕ is satisfiable iff there is a truth assignment that

satisfies ϕ.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 102

Analysis (concluded)

• The algorithm decides language {ϕ : ϕ is satisfiable}.
– Suppose ϕ is satisfiable.

– That means there is a truth assignment that satisfies

ϕ.

– So there is a computation path that results in “yes.”

– Suppose ϕ is not satisfiable.

– That means every truth assignment makes ϕ false.

– So every computation path results in “no.”

• General paradigm: Guess a “proof” and then verify it.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 103

The Traveling Salesman Problem

• We are given n cities 1, 2, . . . , n and integer distance dij

between any two cities i and j.

• Assume dij = dji for convenience.

• The traveling salesman problem (tsp) asks for the

total distance of the shortest tour of the cities.

• The decision version tsp (d) asks if there is a tour with

a total distance at most B, where B is an input.a

aBoth problems are extremely important and are equally hard (p. 354

and p. 447).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 104

A Nondeterministic Algorithm for tsp (d)
1: for i = 1, 2, . . . , n do

2: Guess xi ∈ {1, 2, . . . , n}; {The ith city.}a

3: end for

4: xn+1 := x1;

5: {Verification:}
6: if x1, x2, . . . , xn are distinct and

∑n
i=1 dxi,xi+1 ≤ B then

7: “yes”;

8: else

9: “no”;

10: end if

aCan be made into a series of log2 n binary choices for each xi so

that the next-state count (2) is a constant, independent of input size.

Contributed by Mr. Chih-Duo Hong (R95922079) on September 27, 2006.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 105

Analysis

• Suppose the input graph contains at least one tour of

the cities with a total distance at most B.

• Then there is a computation path that leads to “yes.”a

• Suppose the input graph contains no tour of the cities

with a total distance at most B.

• Then every computation path leads to “no.”

aIt does not mean the algorithm will follow that path. It just means

such a computation path exists.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 106

Remarks on the P
?
= NP Open Problema

• Many practical applications depend on answers to the

P
?
= NP question.

• Verification of password is easy (so it is in NP).

– A computer should not take a long time to let a user

log in.

• A password system should be hard to crack (loosely

speaking, cracking it should not be in P).

aContributed by Mr. Kuan-Lin Huang (B96902079, R00922018) on

September 27, 2011.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 107

Nondeterministic Space Complexity Classes

• Let L be a language.

• Then

L ∈ NSPACE(f(n))

if there is an NTM with input and output that decides L

and operates within space bound f(n).

• NSPACE(f(n)) is a set of languages.

• As in the linear speedup theorem (Theorem 3 on p. 75),

constant coefficients do not matter.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 108

Graph Reachability

• Let G(V,E) be a directed graph (digraph).

• reachability asks if, given nodes a and b, does G

contain a path from a to b?

• Can be easily solved in polynomial time by breadth-first

search.

• How about its nondeterministic space complexity?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 109

The First Try: NSPACE(n log n)

1: x1 := a; {Assume a ̸= b.}
2: for i = 2, 3, . . . , n do

3: Guess xi ∈ {v1, v2, . . . , vn}; {The ith node.}
4: end for

5: for i = 2, 3, . . . , n do

6: if (xi−1, xi) ̸∈ E then

7: “no”;

8: end if

9: if xi = b then

10: “yes”;

11: end if

12: end for

13: “no”;

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 110

In Fact, reachability ∈ NSPACE(log n)

1: x := a;

2: for i = 2, 3, . . . , n do

3: Guess y ∈ {v1, v2, . . . , vn}; {The next node.}
4: if (x, y) ̸∈ E then

5: “no”;

6: end if

7: if y = b then

8: “yes”;

9: end if

10: x := y;

11: end for

12: “no”;

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 111

Space Analysis

• Variables i, x, and y each require O(log n) bits.

• Testing (x, y) ∈ E is accomplished by consulting the

input string with counters of O(log n) bits long.

• Hence

reachability ∈ NSPACE(logn).

– reachability with more than one terminal node

also has the same complexity.

• reachability ∈ P (p. 211).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 112

Undecidability

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 113

God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.

— André Weil (1906–1998)

Whatsoever we imagine is finite.

Therefore there is no idea, or conception

of any thing we call infinite.

— Thomas Hobbes (1588–1679), Leviathan

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 114

Infinite Sets

• A set is countable if it is finite or if it can be put in

one-one correspondence with N = { 0, 1, . . . }, the set of

natural numbers.

– Set of integers Z.
∗ 0 ↔ 0.

∗ 1 ↔ 1, 2 ↔ 3, 3 ↔ 5,

∗ −1 ↔ 2,−2 ↔ 4,−3 ↔ 6,

– Set of positive integers Z+: i ↔ i− 1.

– Set of positive odd integers: i ↔ (i− 1)/2.

– Set of (positive) rational numbers: See next page.

– Set of squared integers: i ↔
√
i .

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 115

Rational Numbers Are Countable

5/25/1

1/51/21/1 1/3 1/4

2/1 2/2 2/3 2/4

3/1 3/2 3/3 3/4

4/1 4/2 4/3

1/6

2/5

6/1

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 116

Cardinality

• For any set A, define |A| as A’s cardinality (size).

• Two sets are said to have the same cardinality, or

|A| = |B| or A ∼ B,

if there exists a one-to-one correspondence between their

elements.

• 2A denotes set A’s power set, that is {B : B ⊆ A}.
– E.g., { 0, 1 }’s power set is

2{ 0,1 } = { ∅, { 0 }, { 1 }, { 0, 1 } }.

• If |A| = k, then |2A| = 2k.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 117

Cardinality (concluded)

• Define |A| ≤ |B| if there is a one-to-one correspondence

between A and a subset of B’s.

• Obviously, if A ⊆ B, then |A| ≤ |B|.
– So |N | ≤ |Z |.
– So |N | ≤ |R |.

• Define |A| < |B| if |A| ≤ |B| but |A| ̸= |B|.

• If A (B, then |A| < |B|?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 118

Cardinality and Infinite Sets

• If A and B are infinite sets, it is possible that A (B yet

|A| = |B|.
– The set of integers properly contains the set of odd

integers.

– But the set of integers has the same cardinality as

the set of odd integers (p. 115).a

• A lot of “paradoxes.”

aLeibniz uses it to “prove” that there are no infinite numbers (Russell,

1914).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 119

Galileo’sa Paradox (1638)

• The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

• This is contrary to the axiom of Euclidb that the whole

is greater than any of its proper parts.c

• Resolution of paradoxes: Pick the notion that results in

“better” mathematics.

• The difference between a mathematical paradox and a

contradiction is often a matter of opinions.

aGalileo (1564–1642).
bEuclid (325 B.C.–265 B.C.).
cLeibniz never challenges that axiom (Knobloch, 1999).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 120

Hilbert’sa Paradox of the Grand Hotel

• For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

• Now imagine a hotel with an infinite number of rooms,

all of which are occupied.

• A new guest comes and asks for a room.

• “But of course!” exclaims the proprietor.

• He moves the person previously occupying Room 1 to

Room 2, the person from Room 2 to Room 3, and so on.

• The new customer now occupies Room 1.

aDavid Hilbert (1862–1943).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 121

Hilbert’s Paradox of the Grand Hotel (concluded)

• Now imagine a hotel with an infinite number of rooms,

all taken up.

• An infinite number of new guests come in and ask for

rooms.

• “Certainly,” says the proprietor.

• He moves the occupant of Room 1 to Room 2, the

occupant of Room 2 to Room 4, and so on.

• Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

• “There are many rooms in my Father’s house, and I am

going to prepare a place for you.” (John 14:3)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 122

David Hilbert (1862–1943)

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 123

Cantor’s Theorem

Theorem 6 The set of all subsets of N (2N) is infinite and

not countable.

• Suppose (2N) is countable with f : N → 2N being a

bijection.a

• Consider the set B = {k ∈ N : k ̸∈ f(k)} ⊆ N.

• Suppose B = f(n) for some n ∈ N.
aNote that f(k) is a subset of N.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 124

The Proof (concluded)

• If n ∈ f(n) = B, then n ∈ B, but then n ̸∈ B by B’s

definition.

• If n ̸∈ f(n) = B, then n ̸∈ B, but then n ∈ B by B’s

definition.

• Hence B ̸= f(n) for any n.

• f is not a bijection, a contradiction.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 125

Georg Cantor (1845–1918)

Kac and Ulam (1968), “[If] one

had to name a single person

whose work has had the most

decisive influence on the present

spirit of mathematics, it would

almost surely be Georg Cantor.”

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 126

Cantor’s Diagonalization Argument Illustrated

f(0)

f(1)

f(2)

f(3)

f(4)

f(5)

B

0 1 2 3 4 5

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 127

A Corollary of Cantor’s Theorem

Corollary 7 For any set T , finite or infinite,

|T | < | 2T |.

• The inequality holds in the finite T case as k < 2k.

• Assume T is infinite now.

• To prove |T | ≤ |2T |, simply consider f(x) = {x} ∈ 2T .

– f maps a member of T = { a, b, c, . . . } to a

corresponding member of { { a }, { b }, { c }, . . . } ⊆ 2T .

• To prove the strict inequality |T | � |2T |, we use the

same argument as Cantor’s theorem.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 128

A Second Corollary of Cantor’s Theorem

Corollary 8 The set of all functions on N is not countable.

• It suffices to prove it for functions from N to {0, 1}.

• Every function f : N → {0, 1} determines a subset of N:

{n : f(n) = 1} ⊆ N,

and vice versa.

• So the set of functions from N to {0, 1} has cardinality

| 2N |.

• Cantor’s theorem (p. 124) then implies the claim.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 129

Existence of Uncomputable Problems

• Every program is a finite sequence of 0s and 1s, thus a

nonnegative integer.a

• Hence every program corresponds to some integer.

• The set of programs is countable.

aDifferent binary strings may be mapped to the same integer (e.g.,

“001” and “01”). To prevent it, use the lexicographic order as the map-

ping or simply insert “1” as the most significant bit of the binary string

before the mapping (so “001” becomes “1001”). Contributed by Mr.

Yu-Chih Tung (R98922167) on October 5, 2010.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 130

Existence of Uncomputable Problems (concluded)

• A function is a mapping from integers to integers.

• The set of functions is not countable by Corollary 8

(p. 129).

• So there are functions for which no programs exist.a

aAs a nondeterministic program may not compute a function, we

consider only deterministic programs for this sentence. Contributed by

Mr. Patrick Will (A99725101) on October 5, 2010.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 131

Universal Turing Machinea

• A universal Turing machine U interprets the input

as the description of a TM M concatenated with the

description of an input to that machine, x.

– Both M and x are over the alphabet of U .

• U simulates M on x so that

U(M ;x) = M(x).

• U is like a modern computer, which executes any valid

machine code, or a Java Virtual machine, which

executes any valid bytecode.

aTuring (1936).

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 132

The Halting Problem

• Undecidable problems are problems that have no

algorithms.

• Equivalently, they are languages that are not recursive.

• We knew undecidable problems exist (p. 130).

• We now define a concrete undecidable problem, the

halting problem:

H = {M ;x : M(x) ̸=↗}.

– Does M halt on input x?

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 133

H Is Recursively Enumerable

• Use the universal TM U to simulate M on x.

• When M is about to halt, U enters a “yes” state.

• If M(x) diverges, so does U .

• This TM accepts H.

c⃝2012 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 134

