
Theory of Computation 
Homework 5 

Due: 2012/01/03 

Problem 1. Show that if NP ⊆ BPP then NP = RP. (Hints: It suffices to 

show SAT ∈ RP.) 

Proof.  As RP ⊆ NP (see the slides), it suffices to show that NP ⊆ RP. 

We prove this claim by showing that if NP ⊆ BPP, then SAT ∈ RP. Let 

a formula ϕ with n variables x1,…,xn, be the input. Note that ϕ is 

satisfiable iff there exists a truth assignment for x1,…,xn such that 

ϕ(x1,…,xn) = 1. Let A be a BPP algorithm with error probability at 

most 2−k (see the slides pp. 526－528) for SAT, where k = |ϕ | is the 

length of the formula ϕ. Such an A exists because of the assumption 

that SAT ∈ BPP. We first run A on ϕ. If A rejects, we reject. Otherwise, 

we try to construct a satisfying assignment for ϕ one variable at a time. 

We initialize x1 to 0, and then call A to determine if the resulting 

formula is satisfiable: if A returns “accept”, then we permanently set x1 

to 0; otherwise, we set x1 to 1. We then proceed with x2 similarly. If we 

manage to construct a satisfying assignment at the end, then we verify 

this assignment for ϕ. If ϕ(x1,…,xn) = 1, then we accept; otherwise, we 

reject. 

Here is the analysis. If ϕ is unsatisfiable, then we always reject either 

because A rejects in the process or we do not arrive at a satisfying 



assignment at the end. On the other hand, suppose ϕ is satisfiable. We 

proceed to show that we accept with probability at least 1/2. We invoke 

A a total of n + 1 times. If ϕ is satisfiable and A returns “accept” each 

time only for an assignment for variable xi which is part of a satisfying 

assignment, then we end up with a satisfying assignment. We now 

show that the probability that at least one of the n + 1 invocations 

returns “reject” for an assignment for variable xi which is part of a 

satisfying assignment is at most 1/2. The probability that an invocation 

of A returns does so is at most 2−k. So the probability that we encounter 

it is at most (n + 1)·2−k, which is at most 1/2 because n + 1 ≤ k. Since 

both the algorithm A and the construction of satisfying assignment run 

in polynomial time, the whole procedure clearly runs in polynomial 

time. 

□ 

Problem 2. Show that BPP ⊆ PSPACE. 

Proof.  Let M be a probabilistic TM that runs in polynomial time. We 

can modify M such that it makes exactly nk coin tosses on each branch 

of its computation, for some constant k. Note that there are a total of 

2���  computation paths. Hence, the problem of determining the 

probability that M accepts its input reduces to counting how many 

branches, B, are accepting and comparing this number with P = 

(3/4)·2��� . If B ≥ P, then we accept; otherwise, we reject. This 

deterministic task can be performed in polynomial space by generating 

all possible paths sequentially following M’s program but recycling the 

space used by the previous path. 



□ 


