Theory of Computation

Homework 5

Due: 2012/01/03

Problem 1. Show that if $N P \subseteq B P P$ then $N P=R P$. (Hints: It suffices to
show $S A T \in R P$.)

Proof. As RP \subseteq NP (see the slides), it suffices to show that NP \subseteq RP. We prove this claim by showing that if $\mathrm{NP} \subseteq \mathrm{BPP}$, then $\mathrm{SAT} \in \mathrm{RP}$. Let a formula ϕ with n variables x_{1}, \ldots, x_{n}, be the input. Note that ϕ is satisfiable iff there exists a truth assignment for x_{1}, \ldots, x_{n} such that $\phi\left(x_{1}, \ldots, x_{n}\right)=1$. Let \boldsymbol{A} be a BPP algorithm with error probability at most 2^{-k} (see the slides pp. 526-528) for SAT, where $k=|\phi|$ is the length of the formula ϕ. Such an \boldsymbol{A} exists because of the assumption that SAT $\in \mathrm{BPP}$. We first run \boldsymbol{A} on ϕ. If \boldsymbol{A} rejects, we reject. Otherwise, we try to construct a satisfying assignment for ϕ one variable at a time. We initialize x_{1} to 0 , and then call \boldsymbol{A} to determine if the resulting formula is satisfiable: if \boldsymbol{A} returns "accept", then we permanently set x_{1} to 0 ; otherwise, we set x_{1} to 1 . We then proceed with x_{2} similarly. If we manage to construct a satisfying assignment at the end, then we verify this assignment for ϕ. If $\phi\left(x_{1}, \ldots, x_{n}\right)=1$, then we accept; otherwise, we reject.

Here is the analysis. If ϕ is unsatisfiable, then we always reject either because \boldsymbol{A} rejects in the process or we do not arrive at a satisfying
assignment at the end. On the other hand, suppose ϕ is satisfiable. We proceed to show that we accept with probability at least $1 / 2$. We invoke \boldsymbol{A} a total of $n+1$ times. If ϕ is satisfiable and \boldsymbol{A} returns "accept" each time only for an assignment for variable x_{i} which is part of a satisfying assignment, then we end up with a satisfying assignment. We now show that the probability that at least one of the $n+1$ invocations returns "reject" for an assignment for variable x_{i} which is part of a satisfying assignment is at most $1 / 2$. The probability that an invocation of \boldsymbol{A} returns does so is at most 2^{-k}. So the probability that we encounter it is at most $(n+1) \cdot 2^{-k}$, which is at most $1 / 2$ because $n+1 \leq k$. Since both the algorithm \boldsymbol{A} and the construction of satisfying assignment run in polynomial time, the whole procedure clearly runs in polynomial time.

Problem 2. Show that $\mathrm{BPP} \subseteq$ PSPACE .

Proof. Let M be a probabilistic TM that runs in polynomial time. We can modify M such that it makes exactly n^{k} coin tosses on each branch of its computation, for some constant k. Note that there are a total of $2^{\left(n^{k}\right)}$ computation paths. Hence, the problem of determining the probability that M accepts its input reduces to counting how many branches, B, are accepting and comparing this number with $P=$ (3/4). $2^{\left(n^{k}\right)}$. If $B \geq P$, then we accept; otherwise, we reject. This deterministic task can be performed in polynomial space by generating all possible paths sequentially following M 's program but recycling the space used by the previous path.

