Exponential Circuit Complexity for NP-Complete Problems

- We shall prove exponential lower bounds for NP-complete problems using *monotone* circuits.
 - Monotone circuits are circuits without \neg gates.
- Note that this does not settle the P vs. NP problem or any of the conjectures on p. 544.

The Power of Monotone Circuits

- Monotone circuits can only compute monotone boolean functions.
- They are powerful enough to solve a P-complete problem, MONOTONE CIRCUIT VALUE (p. 266).
- There are NP-complete problems that are not monotone; they cannot be computed by monotone circuits at all.
- There are NP-complete problems that are monotone; they can be computed by monotone circuits.
 - HAMILTONIAN PATH and CLIQUE.

$CLIQUE_{n,k}$

- CLIQUE_{n,k} is the boolean function deciding whether a graph G = (V, E) with n nodes has a clique of size k.
- The input gates are the $\binom{n}{2}$ entries of the adjacency matrix of G.
 - Gate g_{ij} is set to true if the associated undirected edge $\{i, j\}$ exists.
- $CLIQUE_{n,k}$ is a monotone function.
- Thus it can be computed by a monotone circuit.

Crude Circuits

- One possible circuit for $CLIQUE_{n,k}$ does the following.
 - 1. For each $S \subseteq V$ with |S| = k, there is a circuit with $O(k^2) \wedge$ -gates testing whether S forms a clique.
 - 2. We then take an OR of the outcomes of all the $\binom{n}{k}$ subsets $S_1, S_2, \ldots, S_{\binom{n}{k}}$.
- This is a monotone circuit with $O(k^2 \binom{n}{k})$ gates, which is exponentially large unless k or n k is a constant.
- A crude circuit $CC(X_1, X_2, ..., X_m)$ tests if any of $X_i \subseteq V$ forms a clique.

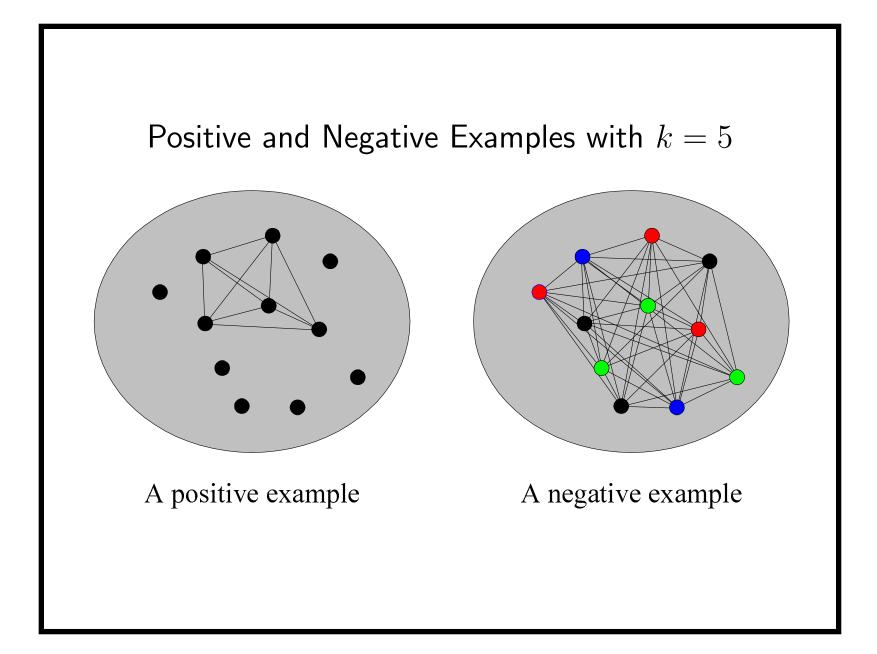
- The above-mentioned circuit is $CC(S_1, S_2, \ldots, S_{\binom{n}{k}})$.

The Proof: Positive Examples

- Analysis will be applied to only **positive examples** and **negative examples** as inputs.
- A positive example is a graph that has $\binom{k}{2}$ edges connecting k nodes in all possible ways.
- There are $\binom{n}{k}$ such graphs.
- They all should elicit a true output from $CLIQUE_{n,k}$.

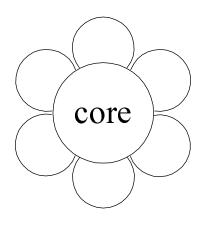
The Proof: Negative Examples

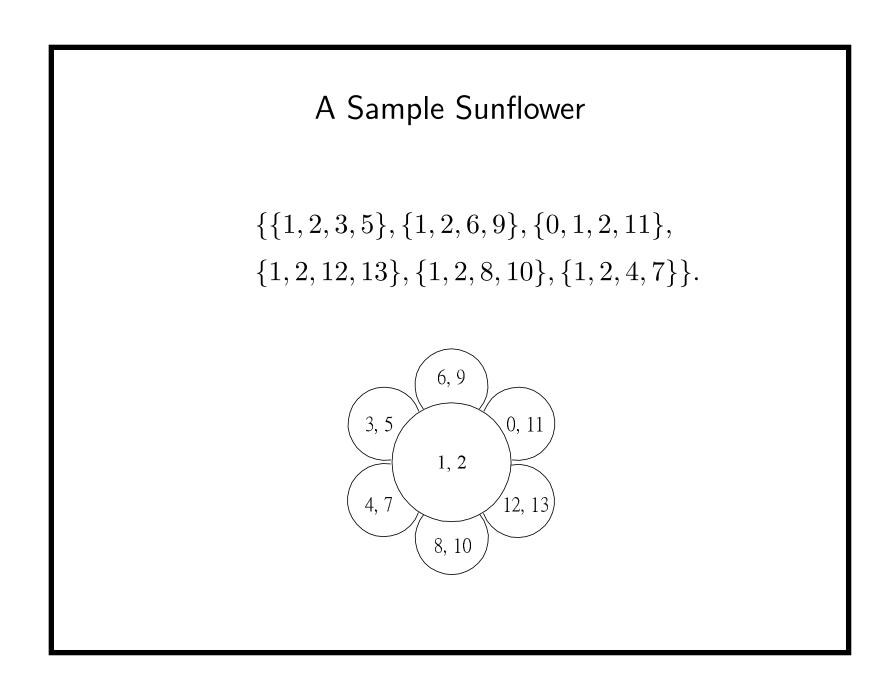
- Color the nodes with k-1 different colors and join by an edge any two nodes that are colored differently.
- There are $(k-1)^n$ such graphs.
- They all should elicit a false output from $CLIQUE_{n,k}$.
 - Each set of k nodes must have 2 identically colored nodes; hence there is no edge between them.



Sunflowers

- Fix $p \in \mathbb{Z}^+$ and $\ell \in \mathbb{Z}^+$.
- A sunflower is a family of p sets {P₁, P₂, ..., P_p}, called petals, each of cardinality at most l.
- Furthermore, all pairs of sets in the family must have the same intersection (called the **core** of the sunflower).





The Erdős-Rado Lemma

Lemma 83 Let \mathcal{Z} be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then \mathcal{Z} must contain a sunflower (with p petals).

- Induction on ℓ .
- For $\ell = 1$, p different singletons form a sunflower (with an empty core).
- Suppose $\ell > 1$.
- Consider a maximal subset $\mathcal{D} \subseteq \mathcal{Z}$ of disjoint sets.
 - Every set in $\mathcal{Z} \mathcal{D}$ intersects some set in \mathcal{D} .

The Proof of the Erdős-Rado Lemma (continued) For example,

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 3, 6, 9\}, \{0, 4, 8, 11\}, \\ \{4, 5, 6, 7\}, \{5, 8, 9, 10\}, \{6, 7, 9, 11\}\},\$$

$$\mathcal{D} = \{\{1, 2, 3, 5\}, \{0, 4, 8, 11\}\}.$$

The Proof of the Erdős-Rado Lemma (continued)

- Suppose \mathcal{D} contains at least p sets.
 - \mathcal{D} constitutes a sunflower with an empty core.
- Suppose \mathcal{D} contains fewer than p sets.
 - Let C be the union of all sets in \mathcal{D} .
 - $|C| \le (p-1)\ell.$
 - -C intersects every set in \mathcal{Z} by \mathcal{D} 's maximality.
 - There is a $d \in C$ that intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell-1}(\ell-1)! \text{ sets in } \mathcal{Z}.$ - Consider $\mathcal{Z}' = \{Z - \{d\} : Z \in \mathcal{Z}, d \in Z\}.$

The Proof of the Erdős-Rado Lemma (concluded)

- (continued)
 - \mathcal{Z}' has more than $M' = (p-1)^{\ell-1}(\ell-1)!$ sets.
 - -M' is just M with ℓ replaced with $\ell 1$.
 - \mathcal{Z}' contains a sunflower by induction, say

$$\{P_1, P_2, \ldots, P_p\}.$$

– Now,

 $\{P_1 \cup \{d\}, P_2 \cup \{d\}, \dots, P_p \cup \{d\}\}$

is a sunflower in \mathcal{Z} .

Comments on the Erdős-Rado Lemma

- A family of more than M sets must contain a sunflower.
- **Plucking** a sunflower means replacing the sets in the sunflower by its core.
- By *repeatedly* finding a sunflower and plucking it, we can reduce a family with more than M sets to a family with at most M sets.
- If Z is a family of sets, the above result is denoted by pluck(Z).
- Note: $pluck(\mathcal{Z})$ is not unique.

An Example of Plucking

• Recall the sunflower on p. 700:

$$\mathcal{Z} = \{\{1, 2, 3, 5\}, \{1, 2, 6, 9\}, \{0, 1, 2, 11\}, \\ \{1, 2, 12, 13\}, \{1, 2, 8, 10\}, \{1, 2, 4, 7\}\}$$

• Then

 $\operatorname{pluck}(\mathcal{Z}) = \{\{1, 2\}\}.$

©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University

Razborov's Theorem

Theorem 84 (Razborov (1985)) There is a constant csuch that for large enough n, all monotone circuits for $CLIQUE_{n,k}$ with $k = n^{1/4}$ have size at least $n^{cn^{1/8}}$.

- We shall approximate any monotone circuit for $CLIQUE_{n,k}$ by a restricted kind of crude circuit.
- The approximation will proceed in steps: one step for each gate of the monotone circuit.
- Each step introduces few errors (false positives and false negatives).
- But the final crude circuit has exponentially many errors.

The Proof

- Fix $k = n^{1/4}$.
- Fix $\ell = n^{1/8}$.
- Note that^a

$$2\binom{\ell}{2} \le k - 1.$$

• p will be fixed later to be $n^{1/8} \log n$.

• Fix
$$M = (p-1)^{\ell} \ell!$$
.

– Recall the Erdős-Rado lemma (p. 701).

 $^{\rm a}{\rm Corrected}$ by Mr. Moustapha Bande (D98922042) on January 05, 2010.

The Proof (continued)

- Each crude circuit used in the approximation process is of the form $CC(X_1, X_2, \ldots, X_m)$, where:
 - $-X_i \subseteq V.$

$$-|X_i| \le \ell$$

$$-m \leq M.$$

- It answers true if any X_i is a clique.
- We shall show how to approximate any circuit for $CLIQUE_{n,k}$ by such a crude circuit, inductively.
- The induction basis is straightforward:
 - Input gate g_{ij} is the crude circuit $CC(\{i, j\})$.

The Proof (continued)

- Any monotone circuit can be considered the OR or AND of two subcircuits.
- We shall show how to build approximators of the overall circuit from the approximators of the two subcircuits.
 - We are given two crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
 - \mathcal{X} and \mathcal{Y} are two families of at most M sets of nodes, each set containing at most ℓ nodes.
 - We construct the approximate OR and the approximate AND of these subcircuits.
 - Then show both approximations introduce few errors.

The Proof: OR

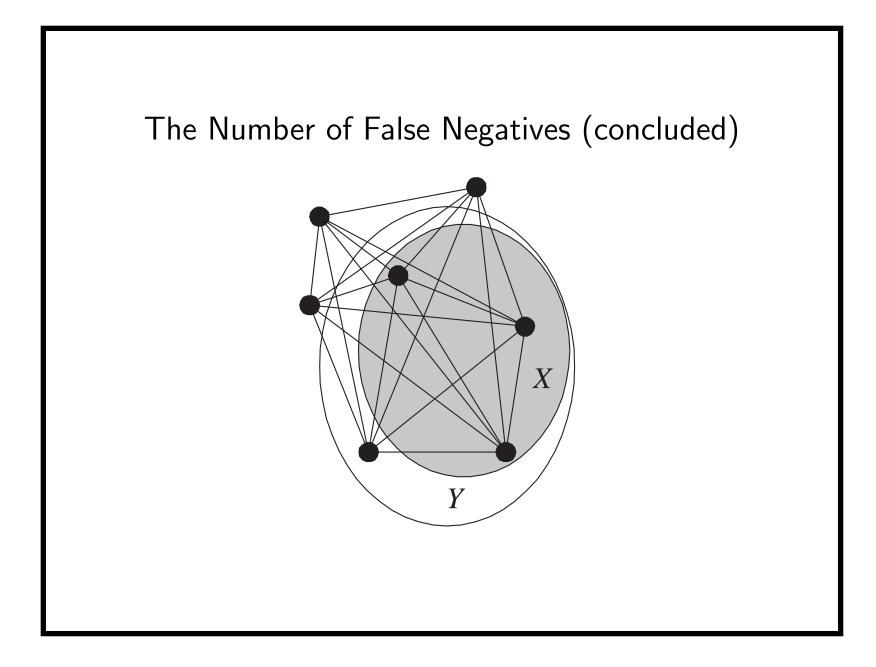
- CC(X∪Y) is equivalent to the OR of CC(X) and CC(Y).
 A set of nodes C ∈ X ∪ Y is a clique if and only if C ∈ X is a clique or C ∈ Y is a clique.
- Violations in using $CC(\mathcal{X} \cup \mathcal{Y})$ occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

 $\operatorname{CC}(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$

as the approximate OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

The Proof: OR

- If $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true.
 - The quick reason: If Y is a clique, then a subset of Y must also be a clique.
 - For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \text{pluck}(\mathcal{X} \cup \mathcal{Y})$ such that $X \subseteq Y$.
 - If Y is a clique, then this X is also a clique.
- We now bound the number of errors this approximate OR makes on the positive and negative examples.



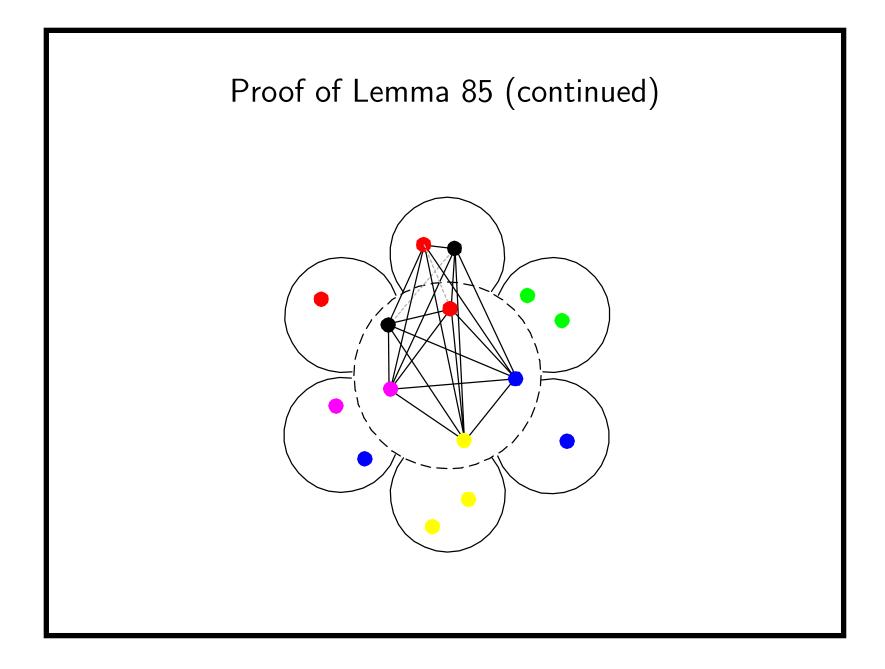
The Proof: OR (concluded)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return false but makes $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ return true.
- CC(pluck(X ∪ Y)) introduces a false negative if a positive example makes either CC(X) or CC(Y) return true but makes CC(pluck(X ∪ Y)) return false.
- How many false positives and false negatives are introduced by $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

Lemma 85 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most $\frac{M}{p-1} 2^{-p} (k-1)^n$ false positives.

- A plucking replaces the sunflower $\{Z_1, Z_2, \ldots, Z_p\}$ with its core Z.
- A false positive is *necessarily* a coloring such that:
 - There is a pair of identically colored nodes in each petal Z_i (and so both crude circuits return false).
 - But the core contains distinctly colored nodes.
 - * This implies at least one node from each same-color pair was plucked away.
- We now count the number of such colorings.



Proof of Lemma 85 (continued)

- Color nodes V at random with k-1 colors and let R(X) denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \dots \wedge R(Z_p) | \neg R(Z)] = \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. (12)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 85 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$.
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}.$
- So the probability^a that a random coloring is a new false positive is at most 2^{-p} by inequality (12).
- As there are $(k-1)^n$ different colorings, each plucking introduces at most $2^{-p}(k-1)^n$ false positives.

^aProportion, i.e.

Proof of Lemma 85 (concluded)

- Recall that $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- $pluck(\mathcal{X} \cup \mathcal{Y})$ ends the moment the set system contains $\leq M$ sets.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most

$$\frac{M}{p-1} 2^{-p} (k-1)^n$$

false positives are introduced.^a

^aNote that the numbers of errors are added not multiplied. Recall that we count how many *new* errors are introduced by each approximation step. Contributed by Mr. Ren-Shuo Liu (D98922016) on January 5, 2010.

The Number of False Negatives

Lemma 86 $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces no false negatives.

- A plucking replaces sets in a crude circuit by their (common) subset.
- This makes the test for cliqueness less stringent (p. 712).

The Proof: AND

• The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $CC(pluck(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})).$

• We now count the number of errors this approximate AND makes on the positive and negative examples.

The Proof: AND (concluded)

- The approximate AND *introduces* a **false positive** if a negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return false but makes the approximate AND return true.
- The approximate AND *introduces* a **false negative** if a positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true but makes the approximate AND return false.
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

Lemma 87 The approximate AND introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

- We prove this claim in stages.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false positives.
 - If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces no additional false positives because we are testing fewer sets for cliqueness.

Proof of Lemma 87 (concluded)

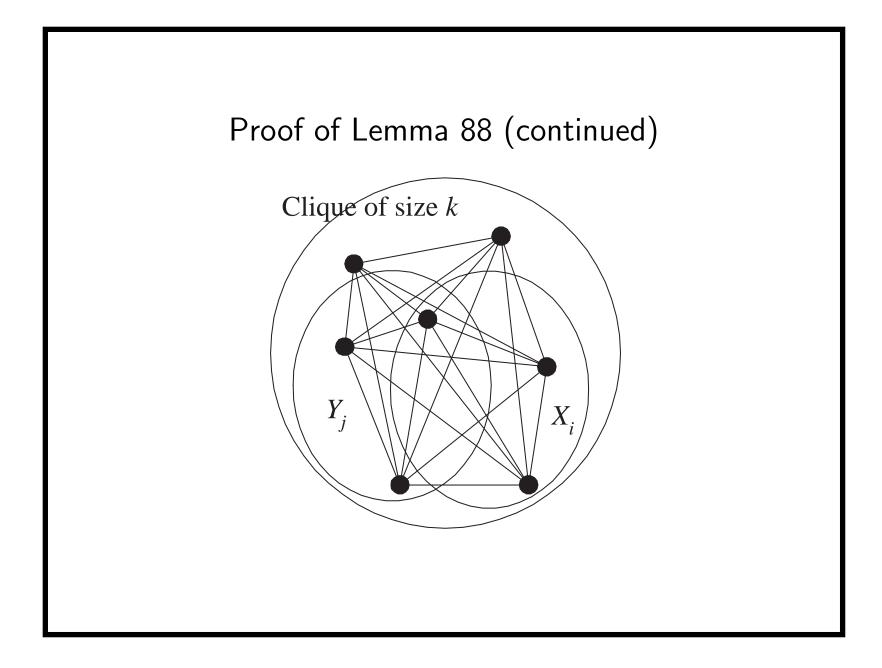
- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck $(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ involves $\le M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 85 (p. 715).
- The desired upper bound is

$$[M^2/(p-1)] 2^{-p} (k-1)^n \le M^2 2^{-p} (k-1)^n.$$

The Number of False Negatives

Lemma 88 The approximate AND introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.

- We again prove this claim in stages.
- $CC({X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}})$ introduces no false negatives.
 - Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
 - This clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$. * This is why both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true.
 - As the clique contains $X_i \cup Y_j$, the new circuit returns true.



Proof of Lemma 88 (continued)

- $\operatorname{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\})$ introduces $\le M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - Deletion of set $Z = X_i \cup Y_j$ larger than ℓ introduces false negatives only if Z is part of a clique.
 - There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
 - * It is the number of positive examples whose clique contains Z.
 - $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1}$ as $|Z| > \ell$.
 - There are at most M^2 such Zs.

Proof of Lemma 88 (concluded)

- Plucking introduces no false negatives.
 - Recall that if $CC(\mathcal{Z})$ is true, then $CC(pluck(\mathcal{Z}))$ must be true (p. 712).

Two Summarizing Lemmas

From Lemmas 85 (p. 715) and 87 (p. 723), we have:

Lemma 89 Each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives.

From Lemmas 86 (p. 720) and 88 (p. 725), we have:

Lemma 90 Each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.

The Proof (continued)

- The above two lemmas show that each approximation step introduces "few" false positives and false negatives.
- We next show that the resulting crude circuit has "a lot" of false positives or false negatives.

The Final Crude Circuit

Lemma 91 Every final crude circuit is:

- 1. Identically false—thus wrong on all positive examples.
- 2. Or outputs true on at least half of the negative examples.
- Suppose it is not identically false.
- By construction, it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$, which at $n^{1/8}$ is less than $k = n^{1/4}$.
- The proof of Lemma 85 (p. 715ff) shows that at least half of the colorings assign different colors to nodes in X.
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 708: $k = n^{1/4}$, $\ell = n^{1/8}$, $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
 - By Lemma 90 (p. 729), each approximation step introduces at most $M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
 - There are $\binom{n}{k}$ positive examples.
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^\ell \ge n^{(1/12)n^{1/8}}$$

gates for large n.

The Proof (concluded)

- Suppose the final crude circuit is not identically false.
 - Lemma 91 (p. 731) says that there are at least $(k-1)^n/2$ false positives.
 - By Lemma 89 (p. 729), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
 - The original monotone circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

Alexander Razborov (1963–)

$P \neq NP$ Proved?

- Razborov's theorem says that there is a monotone language in NP that has no polynomial monotone circuits.
- If we can prove that all monotone languages in P have polynomial monotone circuits, then $P \neq NP$.
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

