
Monte Carlo Algorithmsa

• The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that

– If the algorithm finds that a matching exists, it is
always correct (no false positives).

– If the algorithm answers in the negative, then it may
make an error (false negatives).

aMetropolis and Ulam (1949).
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Monte Carlo Algorithms (concluded)

• The algorithm makes a false negative with probability
≤ 0.5.a

– Note this probability refers tob

prob[ algorithm answers “no” |G has a perfect matching ]

not

prob[ G has a perfect matching | algorithm answers “no” ].

• This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

– It holds for any bipartite graph.
aEquivalently, among the coin flip sequences, at most half of them

lead to the wrong answer.
bIn general, prob[ algorithm answers “no” | input is a “yes” instance ].
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The Markov Inequalitya

Lemma 61 Let x be a random variable taking nonnegative
integer values. Then for any k > 0,

prob[x ≥ kE[ x ] ] ≤ 1/k.

• Let pi denote the probability that x = i.

E[x ] =
∑

i

ipi

=
∑

i<kE[ x ]

ipi +
∑

i≥kE[ x ]

ipi

≥ kE[ x ]× prob[x ≥ kE[ x ]].

aAndrei Andreyevich Markov (1856–1922).
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Andrei Andreyevich Markov (1856–1922)
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An Application of Markov’s Inequality

• Suppose algorithm C runs in expected time T (n) and
always gives the right answer.

• Consider an algorithm that runs C for time kT (n) and
rejects the input if C does not stop within the time
bound.

• By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the wrong answer with probability
≤ 1/k.
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An Application of Markov’s Inequality (concluded)

• By running this algorithm m times, we reduce the error
probability to ≤ k−m.a

• Suppose, instead, we run the algorithm for the same
running time mkT (n) once and rejects the input if it
does not stop within the time bound.

• By Markov’s inequality, this new algorithm gives the
wrong answer with probability ≤ 1/(mk).

• This is much worse than the previous algorithm’s error
probability of ≤ k−m for the same amount of time.

aWith the same input. Thanks to a question on December 7, 2010.
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fsat for k-sat Formulas (p. 428)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth
assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this
problem.
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A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;
2: for i = 1, 2, . . . , r do
3: if T |= φ then
4: return “φ is satisfiable with T”;
5: else
6: Let c be an unsatisfied clause in φ under T ; {All of

its literals are false under T .}
7: Pick any x of these literals at random;
8: Modify T to make x true;
9: end if

10: end for
11: return “φ is unsatisfiable”;
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3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will not
refute it.

• The random walk algorithm needs expected exponential
time for 3sat.

– In fact, it runs in expected O((1.333 · · ·+ ε)n) time
with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2006 is expected O(1.322n)
time for 3sat and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.
bSchöning (1999).
cKwama and Tamaki (2004); Rolf (2006).
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Random Walk Works for 2sata

Theorem 62 Suppose the random walk algorithm with
r = 2n2 is applied to any satisfiable 2sat problem with n

variables. Then a satisfying truth assignment will be
discovered with probability at least 0.5.

• Let T̂ be a truth assignment such that T̂ |= φ.

• Assume our starting T differs from T̂ in i values.

– Their Hamming distance is i.

– Recall T is arbitrary.

• Let t(i) denote the expected number of repetitions of the
flipping step until a satisfying truth assignment is found.

aPapadimitriou (1991).
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The Proof

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = T̂ and hence T |= φ.

• If T 6= T̂ or any other satisfying truth assignment, then
we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause
not satisfied by the present T .

• At least one of the 2 literals is true under T̂ because T̂

satisfies all clauses.

• So we have at least 0.5 chance of moving closer to T̂ .
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The Proof (continued)

• Thus

t(i) ≤ t(i− 1) + t(i + 1)
2

+ 1

for 0 < i < n.

– Inequality is used because, for example, T may differ
from T̂ in both literals.

• It must also hold that

t(n) ≤ t(n− 1) + 1

because at i = n, we can only decrease i.
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The Proof (continued)

• As we are only interested in upper bounds, we solve

x(0) = 0

x(n) = x(n− 1) + 1

x(i) =
x(i− 1) + x(i + 1)

2
+ 1, 0 < i < n

• This is one-dimensional random walk with an absorbing
barrier at i = 0 and a reflecting barrier at i = n.
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The Proof (continued)

• Add the equations up to obtain

x(1) + x(2) + · · ·+ x(n)

=
x(0) + x(1) + 2x(2) + · · ·+ 2x(n− 2) + x(n− 1) + x(n)

2
+n + x(n− 1).

• Simplify to yield

x(1) + x(n)− x(n− 1)
2

= n.

• As x(n)− x(n− 1) = 1, we have

x(1) = 2n− 1.
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The Proof (continued)

• Iteratively, we obtain

x(2) = 4n− 4,

...

x(i) = 2in− i2.

• The worst case happens when i = n, in which case

x(n) = n2.
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The Proof (concluded)

• We therefore reach the conclusion that

t(i) ≤ x(i) ≤ x(n) = n2.

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

– This amounts to invoking the Markov inequality
(p. 460) with k = 2, with the consequence of having a
probability of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8,

2006.
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Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

≤ 1
2m

by Markov’s inequality.

• Alternatively, with the same running time, we can run
the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.
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Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k |N for k = 2, 3, . . . ,
√

N .

• But it runs in Ω(2(log2 N)/2) steps.
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Primality Tests (concluded)

• Suppose N = PQ is a product of 2 distinct primes.

• The probability of success of the density attack (p. 409)
is

≈ 2√
N

when P ≈ Q.

• This probability is exponentially small in terms of the
input length log2 N .
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The Fermat Test for Primality

Fermat’s “little” theorem on p. 412 suggests the following
primality test for any given number N :

1: Pick a number a randomly from {1, 2, . . . , N − 1};
2: if aN−1 6= 1 mod N then
3: return “N is composite”;
4: else
5: return “N is a prime”;
6: end if
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The Fermat Test for Primality (concluded)

• Unfortunately, there are composite numbers called
Carmichael numbers that will pass the Fermat test
for all a ∈ {1, 2, . . . , N − 1}.a
– The Fermat test will return “N is a prime” for all

Carmichael numbers N .

• There are infinitely many Carmichael numbers.b

• In fact, the number of Carmichael numbers less than N

exceeds N2/7 for N large enough.
aCarmichael (1910).
bAlford, Granville, and Pomerance (1992).
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Square Roots Modulo a Prime

• Equation x2 = a mod p has at most two (distinct) roots
by Lemma 57 (p. 417).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are
called quadratic residues.
∗ They are

12 mod p, 22 mod p, . . . , (p− 1)2 mod p.

• We shall show that a number either has two roots or has
none, and testing which one is true is trivial.a

aNo efficient deterministic root-finding algorithms are known yet.
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Euler’s Test

Lemma 63 (Euler) Let p be an odd prime and
a 6= 0 mod p.

1. If
a(p−1)/2 = 1 mod p,

then x2 = a mod p has two roots.

2. If
a(p−1)/2 6= 1 mod p,

then
a(p−1)/2 = −1 mod p

and x2 = a mod p has no roots.
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The Proof (continued)

• Let r be a primitive root of p.

• By Fermat’s “little” theorem,

r(p−1)/2

is a square root of 1.

• So
r(p−1)/2 = 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 6= 1 mod p.

• Hence
r(p−1)/2 = −1 mod p.
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The Proof (continued)

• Let a = rk mod p for some k.

• Then

1 = a(p−1)/2 = rk(p−1)/2 =
[
r(p−1)/2

]k

= (−1)k mod p.

• So k must be even.

• Suppose a = r2j for some 1 ≤ j ≤ (p− 1)/2.

• Then a(p−1)/2 = rj(p−1) = 1 mod p, and a’s two distinct
roots are rj ,−rj(= rj+(p−1)/2 mod p).

– If rj = −rj mod p, then 2rj = 0 mod p, which implies
rj = 0 mod p, a contradiction.
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The Proof (continued)

• As 1 ≤ j ≤ (p− 1)/2, there are (p− 1)/2 such a’s.

• Each such a has 2 distinct square roots.

• The square roots of all the a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is {1, 2, . . . , p− 1}.
• As a result, a = r2j , 1 ≤ j ≤ (p− 1)/2, exhaust all the

quadratic residues.
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The Proof (concluded)

• If a = r2j+1, then it has no roots because all the square
roots have been taken.

• Now,

a(p−1)/2 =
[
r(p−1)/2

]2j+1

= (−1)2j+1 = −1 mod p.
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The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 63 (p. 480) a(p−1)/2 mod p = ±1 for
a 6= 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) =





0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

• Euler’s test implies a(p−1)/2 = (a | p) mod p for any odd
prime p and any integer a.

• Note that (ab|p) = (a|p)(b|p).

aAndrien-Marie Legendre (1752–1833).
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Gauss’s Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then
(q|p) = (−1)m, where m is the number of residues in
R = { iq mod p : 1 ≤ i ≤ (p− 1)/2 } that are greater than
(p− 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p|(j − i) q or p|q.
• No two elements of R add up to p.

– If iq + jq = 0 mod p, then p|(i + j) or p|q.
– But neither is possible.
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The Proof (continued)

• Consider the set R′ of residues that result from R if we
replace each of the m elements a ∈ R such that
a > (p− 1)/2 by p− a.

– This is equivalent to performing −a mod p.

• All residues in R′ are now at most (p− 1)/2.

• In fact, R′ = {1, 2, . . . , (p− 1)/2} (see illustration next
page).

– Otherwise, two elements of R would add up to p,
which has been shown to be impossible.
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p = 7 and q = 5.
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The Proof (concluded)

• Alternatively, R′ = {±iq mod p : 1 ≤ i ≤ (p− 1)/2},
where exactly m of the elements have the minus sign.

• Take the product of all elements in the two
representations of R′.

• So

[(p− 1)/2]! = (−1)mq(p−1)/2[(p− 1)/2]! mod p.

• Because gcd([(p− 1)/2]!, p) = 1, the above implies

1 = (−1)mq(p−1)/2 mod p.
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Legendre’s Law of Quadratic Reciprocitya

• Let p and q be two odd primes.

• The next result says their Legendre symbols are distinct
if and only if both numbers are 3 mod 4.

Lemma 65 (Legendre (1785), Gauss)

(p|q)(q|p) = (−1)
p−1
2

q−1
2 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a correct

proof. Gauss proved the theorem when he was 19. He gave at least 6

different proofs during his life. The 152nd proof appeared in 1963.
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The Proof (continued)

• Sum the elements of R′ in the previous proof in mod2.

• On one hand, this is just
∑(p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals

(p−1)/2∑

i=1

(
qi− p

⌊
qi

p

⌋)
+ mp mod 2

=


q

(p−1)/2∑

i=1

i− p

(p−1)/2∑

i=1

⌊
qi

p

⌋
 + mp mod 2.

– Signs are irrelevant under mod2.

– m is as in Lemma 64 (p. 486).
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The Proof (continued)

• Ignore odd multipliers to make the sum equal



(p−1)/2∑

i=1

i−
(p−1)/2∑

i=1

⌊
qi

p

⌋
 + m mod 2.

• Equate the above with
∑(p−1)/2

i=1 i mod 2 to obtain

m =
(p−1)/2∑

i=1

⌊
qi

p

⌋
mod 2.
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The Proof (concluded)

• ∑(p−1)/2
i=1 b qi

p c is the number of integral points under the
line

y = (q/p)x

for 1 ≤ x ≤ (p− 1)/2.

• Gauss’s lemma (p. 486) says (q|p) = (−1)m.

• Repeat the proof with p and q reversed.

• So (p|q) = (−1)m′
, where m′ is the number of integral

points above the line y = (q/p)x for 1 ≤ y ≤ (q − 1)/2.

• As a result, (p|q)(q|p) = (−1)m+m′
.

• But m + m′ is the total number of integral points in the
p−1
2 × q−1

2 rectangle, which is p−1
2

q−1
2 .
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Eisenstein’s Rectangle

(p,q)

(p - 1)/2

(q - 1)/2

p = 11 and q = 7.
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The Jacobi Symbola

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a |m) extends it to cases where m

is not prime.

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a,m) = 1, then

(a|m) =
k∏

i=1

(a | pi).

– Note that the Jacobi symbol equals ±1.

– It reduces to the Legendre symbol when m is a prime.

• Define (a | 1) = 1.
aCarl Jacobi (1804–1851).
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Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for
arguments for which it is defined.

1. (ab |m) = (a |m)(b |m).

2. (a |m1m2) = (a |m1)(a |m2).

3. If a = b mod m, then (a |m) = (b |m).

4. (−1 |m) = (−1)(m−1)/2 (by Lemma 64 on p. 486).

5. (2 |m) = (−1)(m
2−1)/8.a

6. If a and m are both odd, then
(a |m)(m | a) = (−1)(a−1)(m−1)/4.

aBy Lemma 64 (p. 486) and some parity arguments.
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Properties of the Jacobi Symbol (concluded)

• These properties allow us to calculate the Jacobi symbol
without factorization.

• This situation is similar to the Euclidean algorithm.

• Note also that (a |m) = 1/(a |m) because (a |m) = ±1.a

aContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on

December 6, 2011.
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Calculation of (2200|999)

(202|999) = (2|999)(101|999)

= (−1)(999
2−1)/8(101|999)

= (−1)124750(101|999) = (101|999)

= (−1)(100)(998)/4(999|101) = (−1)24950(999|101)

= (999|101) = (90|101) = (−1)(101
2−1)/8(45|101)

= (−1)1275(45|101) = −(45|101)

= −(−1)(44)(100)/4(101|45) = −(101|45) = −(11|45)

= −(−1)(10)(44)/4(45|11) = −(45|11)

= −(1|11) = −1.
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A Result Generalizing Proposition 10.3 in the
Textbook

Theorem 66 The group of set Φ(n) under multiplication
mod n has a primitive root if and only if n is either 1, 2, 4,
pk, or 2pk for some nonnegative integer k and and odd
prime p.

This result is essential in the proof of the next lemma.
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The Jacobi Symbol and Primality Testa

Lemma 67 If (M |N) = M (N−1)/2 mod N for all
M ∈ Φ(N), then N is a prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1,

and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an

M ∈ Φ(N) such that

M = r mod p,

M = 1 mod m.

aMr. Clement Hsiao (R88526067) pointed out that the textbook’s

proof for Lemma 11.8 is incorrect while he was a senior in January 1999.
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The Proof (continued)

• By the hypothesis,

M (N−1)/2 = (M |N) = (M | p)(M |m) = −1 mod N.

• Hence
M (N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M (N−1)/2 = 1 mod m,

a contradiction.
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The Proof (continued)

• Second, assume that N = pa, where p is an odd prime
and a ≥ 2.

• By Theorem 66 (p. 499), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2

= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) |N − 1,

which implies that p |N − 1.

• But this is impossible given that p |N .
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The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime,
gcd(m, p) = 1, m > 1 (not necessarily prime), and a is
even.

• The proof mimics that of the second case.

• By Theorem 66 (p. 499), there exists a primitive root r

modulo pa.

• From the assumption,

MN−1 =
[
M (N−1)/2

]2

= (M |N)2 = 1 mod N

for all M ∈ Φ(N).
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The Proof (continued)

• In particular,
MN−1 = 1 mod pa (7)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an
M ∈ Φ(N) such that

M = r mod pa,

M = 1 mod m.

• Because M = r mod pa and Eq. (7),

rN−1 = 1 mod pa.
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The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p− 1),

pa−1(p− 1) |N − 1,

which implies that p |N − 1.

• But this is impossible given that p |N .
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The Number of Witnesses to Compositeness

Theorem 68 (Solovay and Strassen (1977)) If N is an
odd composite, then (M |N) = M (N−1)/2 mod N for at most
half of M ∈ Φ(N).

• By Lemma 67 (p. 500) there is at least one a ∈ Φ(N)
such that (a|N) 6= a(N−1)/2 mod N .

• Let B = {b1, b2, . . . , bk} ⊆ Φ(N) be the set of all distinct
residues such that (bi|N) = b

(N−1)/2
i mod N .

• Let aB = {abi mod N : i = 1, 2, . . . , k}.
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The Proof (concluded)

• |aB| = k.

– abi = abj mod N implies N |a(bi − bj), which is
impossible because gcd(a,N) = 1 and N > |bi − bj |.

• aB ∩B = ∅ because

(abi)
(N−1)/2 = a(N−1)/2b

(N−1)/2
i 6= (a|N)(bi|N) = (abi|N).

• Combining the above two results, we know

|B |
φ(N)

≤ |B |
|B ∪ aB | = 0.5.
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1: if N is even but N 6= 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ {2, 3, . . . , N − 1} randomly;

7: if gcd(M, N) > 1 then

8: return “N is composite”;

9: else

10: if (M |N) 6= M (N−1)/2 mod N then

11: return “N is composite”;

12: else

13: return “N is a prime”;

14: end if

15: end if
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Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it
is always correct.

• The probability of a false negative is at most one half.

– If the input is composite, then the probability that
the algorithm says the number is a prime is ≤ 0.5.

• So it is a Monte Carlo algorithm for compositeness.
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The Improved Density Attack for compositeness

All numbers < N

Witnesses to
compositeness of

N via Jacobi

Witnesses to
compositeness of

N via common
factor
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Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each
step.

• N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation
paths of N on x halt with “yes” where n = |x |.

– If x 6∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo
TMs is denoted RP (randomized polynomial time).a

aAdleman and Manders (1977).
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Comments on RP

• Nondeterministic steps can be seen as fair coin flips.

• There are no false positive answers.

• The probability of false negatives, 1− ε, is at most 0.5.

• But any constant between 0 and 1 can replace 0.5.

– By repeating the algorithm k = d− 1
log2 1−εe times, the

probability of false negatives becomes (1− ε)k ≤ 0.5.

• In fact, ε can be arbitrarily close to 0 as long as it is of
the order 1/q(n) for some polynomial q(n).

– − 1
log2 1−ε = O( 1

ε ) = O(q(n)).
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Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

• compositeness ∈ RP; primes ∈ coRP; primes ∈ RP.a

– In fact, primes ∈ P.b

• RP ∪ coRP is an alternative “plausible” notion of
efficient computation.

aAdleman and Huang (1987).
bAgrawal, Kayal, and Saxena (2002).
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ZPPa (Zero Probabilistic Polynomial)

• The class ZPP is defined as RP ∩ coRP.

• A language in ZPP has two Monte Carlo algorithms, one
with no false positives and the other with no false
negatives.

• If we repeatedly run both Monte Carlo algorithms,
eventually one definite answer will come (unlike RP).

– A positive answer from the one without false
positives.

– A negative answer from the one without false
negatives.

aGill (1977).
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The ZPP Algorithm (Las Vegas)

1: {Suppose L ∈ ZPP.}
2: {N1 has no false positives, and N2 has no false

negatives.}
3: while true do
4: if N1(x) = “yes” then
5: return “yes”;
6: end if
7: if N2(x) = “no” then
8: return “no”;
9: end if

10: end while
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ZPP (concluded)

• The expected running time for the correct answer to
emerge is polynomial.

– The probability that a run of the 2 algorithms does
not generate a definite answer is 0.5 (why?).

– Let p(n) be the running time of each run of the
while-loop.

– The expected running time for a definite answer is
∞∑

i=1

0.5iip(n) = 2p(n).

• Essentially, ZPP is the class of problems that can be
solved without errors in expected polynomial time.
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