The knapsack Problem

- There is a set of n items.
- Item i has value $v_{i} \in \mathbb{Z}^{+}$and weight $w_{i} \in \mathbb{Z}^{+}$.
- We are given $K \in \mathbb{Z}^{+}$and $W \in \mathbb{Z}^{+}$.
- knapsack asks if there exists a subset $S \subseteq\{1,2, \ldots, n\}$ such that $\sum_{i \in S} w_{i} \leq W$ and $\sum_{i \in S} v_{i} \geq K$.
- We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete ${ }^{\text {a }}$

- knapsack \in NP: Guess an S and verify the constraints.
- We assume $v_{i}=w_{i}$ for all i and $K=W$.
- KNAPSACK now asks if a subset of $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ adds up to exactly K.
- Picture yourself as a radio DJ.
- Or a person trying to control the calories intake.

[^0]
The Proof (continued)

- We shall reduce EXACT COVER BY 3-SETS to KNAPSACK.
- The primary differences between the two problems are: ${ }^{a}$
- Sets vs. numbers.
- Union vs. addition.
- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of size-3 subsets of $U=\{1,2, \ldots, 3 m\}$.
- EXACT COVER By 3-SETS asks if there are m disjoint sets in F that cover the set U.

[^1]
The Proof (continued)

- Think of a set as a bit vector in $\{0,1\}^{3 m}$.
- 001100010 means the set $\{3,4,8\}$.
-110010000 means the set $\{1,2,5\}$.
- Our goal is $\overbrace{11 \cdots 1}$.

The Proof (continued)

- A bit vector can also be seen as a binary number.
- Set union resembles addition.
$-001100010+110010000=111110010$, which denotes the set $\{1,2,3,4,5,8\}$, as desired.
- Trouble occurs when there is carry.
$-010000000+010000000=100000000$, which denotes the set $\{1\}$, not the desired $\{2\}$.
$-001100010+001110000=011010010$, which denotes the set $\{2,3,5,8\}$, not the desired $\{3,4,5,8\}$. ${ }^{\text {a }}$

[^2]
The Proof (continued)

- Carry may also lead to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.
$-000100010+001110000+101100000+000001101=$ 111111111.
- But the set on the left-hand side, $\{1,3,4,5,6,7,8,9\}$, is not an exact cover.
- And it uses 4 sets instead of the required $m=3 .{ }^{\text {a }}$
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to $n+1$.

[^3]
The Proof (continued)

- Set v_{i} to be the integer corresponding to the bit vector encoding S_{i} in base $n+1$:

$$
v_{i}=\sum_{j \in S_{i}}(n+1)^{3 m-j}
$$

- Now in base $n+1$, if there is a set S such that $3 m$
$\sum_{i \in S} v_{i}=\overbrace{11 \cdots 1}$, then every bit position must be contributed by exactly one v_{i} and $|S|=m$.
- Finally, set

$$
K=\sum_{j=0}^{3 m-1}(n+1)^{j}=\overbrace{11 \cdots 1}^{3 m} \quad(\text { base } n+1) .
$$

The Proof (continued)

- Suppose F admits an exact cover, say $\left\{S_{1}, S_{2}, \ldots, S_{m}\right\}$.
- Then picking $S=\{1,2, \ldots, m\}$ clearly results in

$$
v_{1}+v_{2}+\cdots+v_{m}=\overbrace{11 \cdots 1}^{3 m} .
$$

- It is important to note that the meaning of addition $(+)$ is independent of the base. ${ }^{\text {a }}$
- It is just regular addition.
- But an S_{i} may give rise to different integer v_{i} 's under different bases.

[^4]
The Proof (concluded)

- On the other hand, suppose there exists an S such that $\sum_{i \in S} v_{i}=\overbrace{11 \cdots 1}^{3 m}$ in base $n+1$.
- The no-carry property implies that $|S|=m$ and $\left\{S_{i}: i \in S\right\}$ is an exact cover.

An Example

- Let $m=3, U=\{1,2,3,4,5,6,7,8,9\}$, and

$$
\begin{aligned}
& S_{1}=\{1,3,4\}, \\
& S_{2}=\{2,3,4\}, \\
& S_{3}=\{2,5,6\}, \\
& S_{4}=\{6,7,8\}, \\
& S_{5}=\{7,8,9\} .
\end{aligned}
$$

- Note that $n=5$, as there are $5 S_{i}$'s.

An Example (concluded)

- Our reduction produces

$$
\begin{aligned}
K & =\sum_{j=0}^{3 \times 3-1} 6^{j}=\overbrace{11 \cdots 1}^{3 \times 3}(\text { base } 6)=2015539 \\
v_{1} & =101100000=1734048 \\
v_{2} & =011100000=334368 \\
v_{3} & =010011000=281448 \\
v_{4} & =000001110=258 \\
v_{5} & =000000111=43
\end{aligned}
$$

- Note $v_{1}+v_{3}+v_{5}=K$.
- Indeed, $S_{1} \cup S_{3} \cup S_{5}=\{1,2,3,4,5,6,7,8,9\}$, an exact cover by 3 -sets.

BIN PACKING

- We are given N positive integers $a_{1}, a_{2}, \ldots, a_{N}$, an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 46 BIN PACKING is NP-complete.

INTEGER PROGRAMMING

- INTEGER PROGRAMmING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- In contrast, LINEAR PROGRAMMING asks whether a system of linear inequalities with integer coefficients has a rational solution.

INTEGER PROGRAMMING Is NP-Complete ${ }^{\text {a }}$

- SEt COVERING can be expressed by the inequalities $A x \geq \overrightarrow{1}, \sum_{i=1}^{n} x_{i} \leq B, 0 \leq x_{i} \leq 1$, where
$-x_{i}$ is one if and only if S_{i} is in the cover.
- A is the matrix whose columns are the bit vectors of the sets S_{1}, S_{2}, \ldots
$-\overrightarrow{1}$ is the vector of 1 s .
- The operations in $A x$ are standard matrix operations.
- This shows integer programming is NP-hard.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.

[^5]
Christos Papadimitriou

Easier or Harder? ${ }^{\text {a }}$

- Adding restrictions on the allowable problem instances will not make a problem harder.
- We are now solving a subset of problem instances.
- The independent set proof (p. 309) and the KNAPSACK proof (p. 358).
- SAT to 2sAT (easier by p. 292).
- CIRCUIT VALUE to MONOTONE CIRCUIT VALUE (equally hard by p. 266).

[^6]
Easier or Harder? (concluded)

- Adding restrictions on the allowable solutions may make a problem easier, as hard, or harder.
- It is problem dependent.
- min cut to bisection width (harder by p. 335).
- LINEAR PROGRAMMING to INTEGER PROGRAMMING (harder by p. 369).
- SAT to NAESAT (equally hard by p. 303) and MAX CUT to MAX BISECTION (equally hard by p. 333).
- 3-COLORING to 2 -COLORING (easier by p. 343).

coNP and Function Problems

coNP

- NP is the class of problems that have succinct certificates (recall Proposition 35 on p. 276).
- By definition, coNP is the class of problems whose complement is in NP.
- coNP is therefore the class of problems that have succinct disqualifications:
- A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
- Only "no" instances have such proofs.

coNP (continued)

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
- If $x \in L$, then $M(x)=$ "yes" for all computation paths.
- If $x \notin L$, then $M(x)=$ "no" for some computation path.
- Note that if we swap "yes" and "no" of M, the new algorithm M^{\prime} decides $\bar{L} \in$ NP in the classic sense (p. 77).

coNP (concluded)

- Clearly $\mathrm{P} \subseteq$ coNP.
- It is not known if

$$
\mathrm{P}=\mathrm{NP} \cap \mathrm{coNP} .
$$

- Contrast this with

$$
\mathrm{R}=\mathrm{RE} \cap \mathrm{coRE}
$$

(see Proposition 11 on p. 135).

Some coNP Problems

- VALIDITY \in coNP.
- If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
- SAT COMPLEMENT is the complement of SAT.
- The disqualification is a truth assignment that satisfies it.
- hamiltonian path complement \in coNP.
- The disqualification is a Hamiltonian path.

Some coNP Problems (concluded)

- OPTIMAL TSP $(D) \in$ coNP.
- optimal TSP (D) asks if the optimal tour has a total distance of B, where B is an input. ${ }^{\text {a }}$
- The disqualification is a tour with a length $<B$.

[^7]A Nondeterministic Algorithm for SAT COMPLEMENT
ϕ is a boolean formula with n variables.
1: for $i=1,2, \ldots, n$ do
2: Guess $x_{i} \in\{0,1\} ;\{$ Nondeterministic choice. $\}$
3: end for
4: \{Verification:\}
5: if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)=1$ then
6: "no";
7: else
8: "yes";
9: end if

Analysis

- The algorithm decides language $\{\phi: \phi$ is unsatisfiable $\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^{n}.
- ϕ is unsatisfiable iff every truth assignment falsifies ϕ.
- But every truth assignment falsifies ϕ iff every computation path results in "yes."

An Alternative Characterization of coNP

Proposition 47 Let $L \subseteq \Sigma^{*}$ be a language. Then $L \in c o N P$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$
L=\{x: \forall y(x, y) \in R\} .
$$

(As on p. 275, we assume $|y| \leq|x|^{k}$ for some k.)

- $\bar{L}=\{x: \exists y(x, y) \in \neg R\}$.
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \mathrm{NP}$ by Proposition 35 (p. 276).
- Hence $L \in$ coNP by definition.

coNP-Completeness

Proposition $48 L$ is NP-complete if and only if its complement $\bar{L}=\Sigma^{*}-L$ is coNP-complete.
Proof (\Rightarrow; the \Leftarrow part is symmetric)

- Let \bar{L}^{\prime} be any coNP language.
- Hence $L^{\prime} \in \mathrm{NP}$.
- Let R be the reduction from L^{\prime} to L.
- So $x \in L^{\prime}$ if and only if $R(x) \in L$.
- Equivalently, $x \notin L^{\prime}$ if and only if $R(x) \notin L$ (the law of transposition).

coNP Completeness (concluded)

- So $x \in \bar{L}^{\prime}$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}^{\prime} to \bar{L}.
- But $\bar{L} \in \mathrm{coNP}$.

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
- VALIDITY is coNP-complete.
$-\phi$ is valid if and only if $\neg \phi$ is not satisfiable.
- The reduction from sat complement to validity is hence easy.
- hamiltonian path complement is coNP-complete.

Possible Relations between P, NP, coNP

1. $\mathrm{P}=\mathrm{NP}=\mathrm{coNP}$.
2. $\mathrm{NP}=\mathrm{coNP}$ but $\mathrm{P} \neq \mathrm{NP}$.
3. NP \neq coNP and $\mathrm{P} \neq \mathrm{NP}$.

- This is the current "consensus."

The Primality Problem

- An integer p is prime if $p>1$ and all positive numbers other than 1 and p itself cannot divide it.
- PRIMES asks if an integer N is a prime number.
- Dividing N by $2,3, \ldots, \sqrt{N}$ is not efficient.
- The length of N is only $\log N$, but $\sqrt{N}=2^{0.5 \log N}$.
- So it is an exponential-time algorithm.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- Later, we will focus on efficient "probabilistic" algorithms for PRIMES (used in Mathematica, e.g.).

```
    if n=\mp@subsup{a}{}{b}}\mathrm{ for some }a,b>1\mathrm{ then
    return "composite";
    end if
    for }r=2,3,\ldots,n-1 d
        if gcd}(n,r)>1 then
            return "composite";
        end if
        if r is a prime then
            Let q}\mathrm{ be the largest prime factor of r-1;
            if q\geq4\sqrt{}{r}\operatorname{log}n\mathrm{ and }\mp@subsup{n}{}{(r-1)/q}\not=1\operatorname{mod}r\mathrm{ then}
                break; {Exit the for-loop.}
            end if
        end if
        end for {r-1 has a prime factor q\geq4\sqrt{}{r}}\operatorname{log}n.
    for }a=1,2,\ldots,2\sqrt{}{r}\operatorname{log}n\mathrm{ do
        if (x-a\mp@subsup{)}{}{n}\not=(\mp@subsup{x}{}{n}-a)\operatorname{mod}(\mp@subsup{x}{}{r}-1)\mathrm{ in }\mp@subsup{Z}{n}{}[x] then
            return "composite";
        end if
        end for
        return "prime"; {The only place with "prime" output.}
```


The Primality Problem (concluded)

- $\mathrm{NP} \cap$ coNP is the class of problems that have succinct certificates and succinct disqualifications.
- Each "yes" instance has a succinct certificate.
- Each "no" instance has a succinct disqualification.
- No instances have both.
- We will see that primes $\in \mathrm{NP} \cap$ coNP.
- In fact, PRIMES $\in \mathrm{P}$ as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 49 (Lucas and Lehmer (1927)) a A number
$p>1$ is prime if and only if there is a number $1<r<p$ (called the primitive root or generator) such that

1. $r^{p-1}=1 \bmod p$, and
2. $r^{(p-1) / q} \neq 1 \bmod p$ for all prime divisors q of $p-1$.

- We will prove the theorem later (see pp. 402ff).

[^8]
Derrick Lehmer (1905-1991)

Pratt's Theorem

Theorem 50 (Pratt (1975)) PRImes $\in N P \cap \operatorname{coNP}$.

- Primes is in coNP because a succinct disqualification is a proper divisor.
- A proper divisor of a number n means n is not a prime.
- Suppose p is a prime.
- p 's certificate includes the r in Theorem 49 (p. 391).
- Use recursive doubling to check if $r^{p-1}=1 \bmod p$ in time polynomial in the length of the input, $\log _{2} p$. $-r, r^{2}, r^{4}, \ldots \bmod p$, a total of $\sim \log _{2} p$ steps.

The Proof (concluded)

- We also need all prime divisors of $p-1: q_{1}, q_{2}, \ldots, q_{k}$.
- Whether r, q_{1}, \ldots, q_{k} are easy to find is irrelevant.
- There may be multiple choices for r.
- Checking $r^{(p-1) / q_{i}} \neq 1 \bmod p$ is also easy.
- Checking $q_{1}, q_{2}, \ldots, q_{k}$ are all the divisors of $p-1$ is easy.
- We still need certificates for the primality of the q_{i} 's.
- The complete certificate is recursive and tree-like:

$$
C(p)=\left(r ; q_{1}, C\left(q_{1}\right), q_{2}, C\left(q_{2}\right), \ldots, q_{k}, C\left(q_{k}\right)\right)
$$

- We next prove that $C(p)$ is succinct.
- As a result, $C(p)$ can be checked in polynomial time.

The Succinctness of the Certificate

Lemma 51 The length of $C(p)$ is at most quadratic at $5 \log _{2}^{2} p$.

- This claim holds when $p=2$ or $p=3$.
- In general, $p-1$ has $k \leq \log _{2} p$ prime divisors $q_{1}=2, q_{2}, \ldots, q_{k}$.
- Reason:

$$
2^{k} \leq \prod_{i=1}^{k} q_{i} \leq p-1 .
$$

- Note also that, as $q_{1}=2$,

$$
\begin{equation*}
\prod_{i=2}^{k} q_{i} \leq \frac{p-1}{2} \tag{3}
\end{equation*}
$$

The Proof (continued)

- $C(p)$ requires:
- 2 parentheses;
$-2 k<2 \log _{2} p$ separators (at most $2 \log _{2} p$ bits);
- r (at most $\log _{2} p$ bits);
- $q_{1}=2$ and its certificate 1 (at most 5 bits);
$-q_{2}, \ldots, q_{k}$ (at most $2 \log _{2} p$ bits); ${ }^{\text {a }}$
$-C\left(q_{2}\right), \ldots, C\left(q_{k}\right)$.

[^9]
The Proof (concluded)

- $C(p)$ is succinct because, by induction,

$$
\begin{aligned}
|C(p)| & \leq 5 \log _{2} p+5+5 \sum_{i=2}^{k} \log _{2}^{2} q_{i} \\
& \leq 5 \log _{2} p+5+5\left(\sum_{i=2}^{k} \log _{2} q_{i}\right)^{2} \\
& \leq 5 \log _{2} p+5+5 \log _{2}^{2} \frac{p-1}{2} \quad \text { by inequality (3) } \\
& <5 \log _{2} p+5+5\left(\log _{2} p-1\right)^{2} \\
& =5 \log _{2}^{2} p+10-5 \log _{2} p \leq 5 \log _{2}^{2} p
\end{aligned}
$$

$$
\text { for } p \geq 4 \text {. }
$$

A Certificate for 23^{a}

- Note that 7 is a primitive root modulo 23 and $23-1=22=2 \times 11$.
- So

$$
C(23)=(7,2, C(2), 11, C(11)) .
$$

- Note that 2 is a primitive root modulo 11 and $11-1=10=2 \times 5$.
- So

$$
C(11)=(2,2, C(2), 5, C(5)) .
$$

[^10]
A Certificate for 23 (concluded)

- Note that 2 is a primitive root modulo 5 and $5-1=4=2^{2}$.
- So

$$
C(5)=(2,2, C(2)) .
$$

- In summary,

$$
C(23)=(7,2, C(2), 11,(2,2, C(2), 5,(2,2, C(2)))) .
$$

[^0]: ${ }^{\mathrm{a}}$ Karp (1972).

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 16, 2010.

[^2]: ${ }^{\text {a }}$ Corrected by Mr. Chihwei Lin (D97922003) on January 21, 2010.

[^3]: ${ }^{\text {a }}$ Thanks to a lively class discussion on November 20, 2002.

[^4]: ${ }^{\text {a }}$ Contributed by Mr. Kuan-Yu Chen (R92922047) on November 3, 2004.

[^5]: ${ }^{\text {a Papadimitriou (1981). }}$

[^6]: ${ }^{a}$ Thanks to a lively class discussion on October 29, 2003.

[^7]: ${ }^{\text {a }}$ Defined by Mr. Che-Wei Chang (R95922093) on September 27, 2006.

[^8]: ${ }^{\text {a François }}$ Edouard Anatole Lucas (1842-1891); Derrick Henry Lehmer (1905-1991).

[^9]: ${ }^{a}$ Why?

[^10]: ${ }^{\text {a }}$ Thanks to a lively discussion on April 24, 2008.

