Theory of Computation

Mid-Term Examination on November 8, 2011
Fall Semester, 2011
Note: You may use any result proved in teh class.

Problem 1 (30 points) It is known that 3-coloring is NP-complete. Show that 6-coloring is NP-complete. (You do not need to show that it is in NP.)

Problem 2 (30 points) Let $A \rightarrow B$ denote the set of functions from set A to set B. (a) [15 points] How many functions in $\{0,1,2,3\}^{n} \rightarrow\{0,1\}$ are there? (b) [15 points] How many functions in $\left(\{0,1,2,3\}^{n} \rightarrow\{0,1\}\right) \rightarrow$ $\{0,1,2\}^{m}$ are there? (Do not write something like $x^{a^{b}}$ as it is ambiguous. Write $x^{\left(a^{b}\right)}$ or $\left(x^{a}\right)^{b}$.)

Problem 3 (15 points) Show that if L and \bar{L} are recursively enumerable, then L is recursively.

Problem 4 (25 points) Let L denote the language $\{M: M$ halts on all inputs \}. Showing L is not a recursive language, that is, membership in L is undecidable.

