MAX BISECTION

- max cut becomes max bisection if we require that $|S|=|V-S|$.
- It has many applications, especially in VLSI layout.

MAX BISECTION Is NP-Complete

- We shall reduce the more general max cut to max BISECTION.
- Add $|V|=n$ isolated nodes to G to yield G^{\prime}.
- G^{\prime} has $2 n$ nodes.
- G^{\prime} 's goal K is identical to G 's
- As the new nodes have no edges, they contribute nothing to the cut.
- This completes the reduction.

The Proof (concluded)

- Every cut $(S, V-S)$ of $G=(V, E)$ can be made into a bisection by appropriately allocating the new nodes between S and $V-S$.
- Hence each cut of G can be made a cut of G^{\prime} of the same size, and vice versa.

BISECTION WIDTH

- BISECTION WIDTH is like max bisection except that it asks if there is a bisection of size at most K (sort of MIN BISECTION).
- Unlike min cut, Bisection width is NP-complete.
- We reduce max bisection to Bisection width.
- Given a graph $G=(V, E)$, where $|V|$ is even, we generate the complement of G.
- Given a goal of K, we generate a goal of $n^{2}-K$.

The Proof (concluded)

- To show the reduction works, simply notice the following easily verifiable claims.
- A graph $G=(V, E)$, where $|V|=2 n$, has a bisection of size K if and only if the complement of G has a bisection of size $n^{2}-K$.
- So G has a bisection of size $\geq K$ if and only if its complement has a bisection of size $\leq n^{2}-K$.

HAMiltonian Path Is NP-Complete ${ }^{\text {a }}$

Theorem 42 Given an undirected graph, the question whether it has a Hamiltonian path is NP-complete.

[^0]A Hamiltonian Path at IKEA, Covina, California?

TSP (D) Is NP-Complete

Corollary 43 TSP (D) is NP-complete.

- Consider a graph G with n nodes.
- Create a weighted complete graph G^{\prime} with the same nodes as from G follows.
- Set $d_{i j}=1$ on G^{\prime} if $[i, j] \in G$ and $d_{i j}=2$ on G^{\prime} if $[i, j] \notin G$.
- Note that G^{\prime} is a complete graph.
- Set the budget $B=n+1$.
- This completes the reduction.

TSP (D) Is NP-Complete (continued)

- Suppose G^{\prime} has a tour of distance at most $n+1$.
- Then that tour on G^{\prime} must contain at most one edge with weight 2 .
- If a tour on G^{\prime} contains 1 edge with weight 2 , remove that edge to arrive at a Hamiltonian path for G.
- If, on the other hand, a tour on G^{\prime} contains no edge with weight 2 .
- Remove any edge to arrive at a Hamiltonian path for G.

TSP (D) Is NP-Complete (concluded)

- The total cost is then at least $(n-2)+2 \cdot 2=n+2>B$.
- On the other hand, suppose G has Hamiltonian paths.
- Then there is a tour on G^{\prime} containing at most one edge with weight 2 .
- The total cost is then at most $(n-1)+2=n+1=B$.
- We conclude that there is a tour of length B or less on G^{\prime} if and only if G has a Hamiltonian path.

Graph Coloring

- k-Coloring: Can the nodes of a graph be colored with $\leq k$ colors such that no two adjacent nodes have the same color?
- 2-coloring is in P (why?).
- But 3 -coloring is NP-complete (see next page).
- k-Coloring is NP-complete for $k \geq 3$ (why?).
- Exact- k-Coloring asks if the nodes of a graph can be colored using exactly k colors.
- It remains NP-complete for $k \geq 3$ (why?).

3-Coloring Is NP-Complete ${ }^{\text {a }}$

- We will reduce naesat to 3-Coloring.
- We are given a set of clauses $C_{1}, C_{2}, \ldots, C_{m}$ each with 3 literals.
- The boolean variables are $x_{1}, x_{2}, \ldots, x_{n}$.
- We shall construct a graph G such that it can be colored with colors $\{0,1,2\}$ if and only if all the clauses can be NAE-satisfied.

[^1]
The Proof (continued)

- Every variable x_{i} is involved in a triangle $\left[a, x_{i}, \neg x_{i}\right]$ with a common node a.
- Each clause $C_{i}=\left(c_{i 1} \vee c_{i 2} \vee c_{i 3}\right)$ is also represented by a triangle

$$
\left[c_{i 1}, c_{i 2}, c_{i 3}\right] .
$$

- Node $c_{i j}$ with the same label as one in some triangle [$a, x_{k}, \neg x_{k}$] represent distinct nodes.
- There is an edge between $c_{i j}$ and the node that represents the j th literal of C_{i}.
- Alternative proof: there is an edge between $\neg c_{i j}$ and the node that represents the j th literal of $C_{i} .{ }^{\text {a }}$

[^2]Construction for $\cdots \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge \cdots$

The Proof (continued)

Suppose the graph is 3-colorable.

- Assume without loss of generality that node a takes the color 2.
- A triangle must use up all 3 colors.
- As a result, one of x_{i} and $\neg x_{i}$ must take the color 0 and the other 1.

The Proof (continued)

- Treat 1 as true and 0 as false. ${ }^{\text {a }}$
- We were dealing only with those triangles with the " a " node, not the clause triangles.
- The resulting truth assignment is clearly contradiction free.
- As each clause triangle contains one color 1 and one color 0 , the clauses are NAE-satisfied.
${ }^{\text {a }}$ The opposite also works.

The Proof (continued)

Suppose the clauses are NAE-satisfiable.

- Color node a with color 2 .
- Color the nodes representing literals by their truth values (color 0 for false and color 1 for true).
- We were dealing only with those triangles with the " a " node, not the clause triangles.

The Proof (continued)

- For each clause triangle:
- Pick any two literals with opposite truth values.
- Color the corresponding nodes with 0 if the literal is true and 1 if it is false.
- Color the remaining node with color 2 .

The Proof (concluded)

- The coloring is legitimate.
- If literal w of a clause triangle has color 2 , then its color will never be an issue.
- If literal w of a clause triangle has color 1 , then it must be connected up to literal w with color 0 .
- If literal w of a clause triangle has color 0 , then it must be connected up to literal w with color 1 .

Algorithms for 3-coloring and the Chromatic Number $\chi(G)$

- Assume G is 3 -colorable.
- There is an algorithm to find a 3 -coloring in time $O\left(3^{n / 3}\right)=1.4422^{n} .{ }^{\text {a }}$
- It has been improved to $O\left(1.3289^{n}\right)$. b
- There is an algorithm to find $\chi(G)$ in time $O\left((4 / 3)^{n / 3}\right)=2.4422^{n}$. ${ }^{\text {c }}$
- It can be improved to

$$
O\left(\left(4 / 3+3^{4 / 3} / 4\right)^{n}\right)=O\left(2.4150^{n}\right) .{ }^{\mathrm{d}}
$$

[^3]
TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- tripartite matching asks if there is a set of n triples in T, none of which has a component in common.
- Each element in B is matched to a different element in G and different element in H.

Theorem 44 (Karp (1972)) tripartite matching is NP-complete.

Related Problems

- We are given a family $F=\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ of subsets of a finite set U and a budget B.
- SEt covering asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume $|U|=3 m$ for some $m \in \mathbb{N}$ and $\left|S_{i}\right|=3$ for all i.
- EXACT COVER By 3 -SETs asks if there are m sets in F that are disjoint and have U as their union.

Related Problems (concluded)

Corollary 45 set covering, set packing, and exact cover by 3 -sets are all NP-complete.

[^0]: ${ }^{\mathrm{a}}$ Karp (1972).

[^1]: ${ }^{a}$ Karp (1972).

[^2]: ${ }^{\text {a }}$ Contributed by Mr. Ren-Shuo Liu (D98922016) on October 27, 2009.

[^3]: ${ }^{\text {a }}$ Lawler (1976).
 ${ }^{\mathrm{b}}$ Beigel and Eppstein (2000).
 ${ }^{c}$ Lawler (1976).
 ${ }^{\mathrm{d}}$ Eppstein (2003).

