Theory of Computation

Homework 2

Problem 1. Given a Boolean expression

$$\phi = ((a \land b) \Rightarrow (c \lor (d \Rightarrow e))) \land (a \Rightarrow f).$$

- (a) Turn ϕ into a CNF.
- (b) Illustrate a Boolean circuit for CNF.

Ans:

(a) By implication, $\phi_1 \Rightarrow \phi_2 = \neg \phi_1 \lor \phi_2$,

$$\begin{split} \phi &= (\neg \left(a \land b \right) \lor \left(c \lor \left(d \Rightarrow e \right) \right) \right) \land \left(a \Rightarrow f \right) \\ &= (\neg \left(a \land b \right) \lor \left(c \lor \left(\neg d \lor e \right) \right) \right) \land \left(a \Rightarrow f \right) \\ &= (\neg \left(a \land b \right) \lor \left(c \lor \left(\neg d \lor e \right) \right) \right) \land \left(\neg a \lor f \right). \end{split}$$

By De Morgan's laws, $\neg (\phi_1 \land \phi_2) \equiv (\neg \phi_1 \lor \neg \phi_2)$,

$$\phi = (\neg (a \land b) \lor (c \lor (\neg d \lor e))) \land (\neg a \lor f)$$
$$= (\neg a \lor \neg b \lor (c \lor (\neg d \lor e))) \land (\neg a \lor f).$$

Finally, the CNF of ϕ is

$$\phi = (\neg a \lor \neg b \lor c \lor \neg d \lor e) \land (\neg a \lor f).$$

(b) A Boolean circuit is as follows:

Problem 2. If f(n) and g(n) are proper complexity functions, sketch proofs that show the following items are proper complexity functions:

- (a) f(g),
- **(b)** f + g,
- (c) $f \cdot g$,
- (d) 2^{g} .

Proof. Assume that f and g are computed by TMs M_f and M_g , respectively.

- (a) Simulate M_g , storing the "output" on a work tape, and then simulate $M_f(\text{using a different set of tapes})$, using that work tape as input. Note that $f(n) \ge n$ has to be satisfied.
- (b) Simulate M_f , then simulate M_g . The outputs will be concatenated together, and so the output will be of length f + g.
- (c) Simulate M_f , storing the "output" on a work tape. Then, repeat the following until that work tape is empty: delete the last character from the work tape, and simulate M_g .
- (d) In addition to the tapes used by the simulation of M_g , we will use 2 extra tapes, T_1 and T_2 . Begin by writing a single character to T_1 . Then, simulate M_g , except, each time M_g tries to output a character, instead, call the following subroutine: Copy T_1 over T_2 , then append T_2 to T_1 . The result is that the length of T_1 is doubled each time M_g tries

to output a character. Then, when the simulation of M_g terminates, simply copy T_1 to the output.

It is clear that all of these run in the required time and space bounds. $\hfill \Box$