Theory of Computation

Homework 2

Problem 1. Given a Boolean expression

$$
\phi=((a \wedge b) \Rightarrow(c \vee(d \Rightarrow e))) \wedge(a \Rightarrow f) .
$$

(a) Turn ϕ into a CNF.
(b) Illustrate a Boolean circuit for CNF.

Ans:

(a) By implication, $\phi_{1} \Rightarrow \phi_{2}=\neg \phi_{1} \vee \phi_{2}$,

$$
\begin{aligned}
\phi & =(\neg(a \wedge b) \vee(c \vee(d \Rightarrow e))) \wedge(a \Rightarrow f) \\
& =(\neg(a \wedge b) \vee(c \vee(\neg d \vee e))) \wedge(a \Rightarrow f) \\
& =(\neg(a \wedge b) \vee(c \vee(\neg d \vee e))) \wedge(\neg a \vee f) .
\end{aligned}
$$

By De Morgan's laws, $\neg\left(\phi_{1} \wedge \phi_{2}\right) \equiv\left(\neg \phi_{1} \vee \neg \phi_{2}\right)$,

$$
\begin{aligned}
\phi & =(\neg(a \wedge b) \vee(c \vee(\neg d \vee e))) \wedge(\neg a \vee f) \\
& =(\neg a \vee \neg b \vee(c \vee(\neg d \vee e))) \wedge(\neg a \vee f) .
\end{aligned}
$$

Finally, the CNF of ϕ is

$$
\phi=(\neg a \vee \neg b \vee c \vee \neg d \vee e) \wedge(\neg a \vee f) .
$$

(b) A Boolean circuit is as follows:

Problem 2. If $f(n)$ and $g(n)$ are proper complexity functions, sketch proofs that show the following items are proper complexity functions:
(a) $f(g)$,
(b) $f+g$,
(c) $f \cdot g$,
(d) 2^{g}.

Proof. Assume that f and g are computed by TMs M_{f} and M_{g}, respectively.
(a) Simulate M_{g}, storing the "output" on a work tape, and then simulate M_{f} (using a different set of tapes), using that work tape as input. Note that $f(n) \geq n$ has to be satisfied.
(b) Simulate M_{f}, then simulate M_{g}. The outputs will be concatenated together, and so the output will be of length $f+g$.
(c) Simulate M_{f}, storing the "output" on a work tape. Then, repeat the following until that work tape is empty: delete the last character from the work tape, and simulate M_{g}.
(d) In addition to the tapes used by the simulation of M_{g}, we will use 2 extra tapes, T_{1} and T_{2}. Begin by writing a single character to T_{1}. Then, simulate M_{g}, except, each time M_{g} tries to output a character, instead, call the following subroutine: Copy T_{1} over T_{2}, then append T_{2} to T_{1}. The result is that the length of T_{1} is doubled each time M_{g} tries
to output a character. Then, when the simulation of M_{g} terminates, simply copy T_{1} to the output.

It is clear that all of these run in the required time and space bounds.

