Complements of Nondeterministic Classes

- From p. 133, we know R, RE, and coRE are distinct.
- coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the complement of L, denoted by \bar{L}, is the language $\Sigma^{*}-L$.
- SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
- HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

- For any complexity class \mathcal{C}, coC denotes the class

$$
\{L: \bar{L} \in \mathcal{C}\} .
$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then $\mathcal{C}=c o \mathcal{C}$.
- They are said to be closed under complement.
- A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 79).

Comments

- As

$$
\operatorname{coC}=\{L: \bar{L} \in \mathcal{C}\}
$$

$L \in \mathcal{C}$ if and only if $\bar{L} \in \operatorname{coC}$.

- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \operatorname{coC}$.
- coC is not defined as $\overline{\mathcal{C}}$.
- For example, suppose $\mathcal{C}=\{\{2,4,6,8,10, \ldots\}\}$.
- Then coC $=\{\{1,3,5,7,9, \ldots\}\}$.
- $\operatorname{But} \overline{\mathcal{C}}=2^{\{1,2,3, \ldots\}^{*}}-\{\{2,4,6,8,10, \ldots\}\}$.

The Quantified Halting Problem

- Let $f(n) \geq n$ be proper.
- Define

$$
\begin{aligned}
H_{f}= & \{M ; x: M \text { accepts input } x \\
& \text { after at most } f(|x|) \text { steps }\}
\end{aligned}
$$

where M is deterministic.

- Assume the input is binary.

$H_{f} \in \operatorname{TIME}\left(f(n)^{3}\right)$

- For each input $M ; x$, we simulate M on x with an alarm clock of length $f(|x|)$.
- Use the single-string simulator (p. 57), the universal TM (p. 118), and the linear speedup theorem (p. 64).
- Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 63, the total running time is $O\left(\ell_{M} k_{M}^{2} f(n)^{2}\right)$, where ℓ_{M} is the length to encode each symbol or state of M and k_{M} is M 's number of strings.
- As $\ell_{M} k_{M}^{2}=O(n)$, the running time is $O\left(f(n)^{3}\right)$, where the constant is independent of M.

$H_{f} \notin \operatorname{TIME}(f(\lfloor n / 2\rfloor))$

- Suppose TM $M_{H_{f}}$ decides H_{f} in time $f(\lfloor n / 2\rfloor)$.
- Consider machine $D_{f}(M)$:

$$
\text { if } M_{H_{f}}(M ; M)=\text { "yes" then "no" else "yes" }
$$

- D_{f} on input M runs in the same time as $M_{H_{f}}$ on input $M ; M$, i.e., in time $f\left(\left\lfloor\frac{2 n+1}{2}\right\rfloor\right)=f(n)$, where $n=|M|{ }^{\text {a }}$
${ }^{\text {a }}$ A student pointed out on October 6, 2004, that this estimation omits the time to write down $M ; M$.

The Proof (concluded)

- First,

$$
\begin{aligned}
& D_{f}\left(D_{f}\right)=\text { "yes" } \\
\Rightarrow & D_{f} ; D_{f} \notin H_{f} \\
\Rightarrow & D_{f} \text { does not accept } D_{f} \text { within time } f\left(\left|D_{f}\right|\right) \\
\Rightarrow & D_{f}\left(D_{f}\right) \neq \text { "yes" } \\
\Rightarrow & D_{f}\left(D_{f}\right)=\text { "no" }
\end{aligned}
$$

a contradiction

- Similarly, $D_{f}\left(D_{f}\right)=$ "no" $\Rightarrow D_{f}\left(D_{f}\right)=$ "yes."

The Time Hierarchy Theorem

Theorem 16 If $f(n) \geq n$ is proper, then

$$
\operatorname{TIME}(f(n)) \subsetneq \operatorname{TIME}\left(f(2 n+1)^{3}\right)
$$

- The quantified halting problem makes it so.

Corollary $17 \mathrm{P} \subsetneq$ EXP.

- $\mathrm{P} \subseteq \operatorname{TIME}\left(2^{n}\right)$ because $\operatorname{poly}(n) \leq 2^{n}$ for n large enough.
- But by Theorem 16,

$$
\operatorname{TIME}\left(2^{n}\right) \subsetneq \operatorname{TIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \operatorname{TIME}\left(2^{n^{2}}\right) \subseteq \operatorname{EXP}
$$

- So P \subsetneq EXP.

The Space Hierarchy Theorem

 Theorem 18 (Hennie and Stearns (1966)) If $f(n)$ is proper, then$$
\operatorname{SPACE}(f(n)) \subsetneq \operatorname{SPACE}(f(n) \log f(n)) .
$$

Corollary $19 \mathrm{~L} \subsetneq$ PSPACE.

Nondeterministic Time Hierarchy Theorems

Theorem 20 (Cook (1973)) If $f(n)$ is proper, then $\operatorname{NTIME}\left(n^{r}\right) \subsetneq \operatorname{NTIME}\left(n^{s}\right)$
whenever $1 \leq r<s$.
Theorem 21 (Seiferas, Fischer, and Meyer (1978)) If $T_{1}(n), T_{2}(n)$ are proper, then
$\operatorname{NTIME}\left(T_{1}(n)\right) \subsetneq \operatorname{NTIME}\left(T_{2}(n)\right)$
whenever $T_{1}(n+1)=o\left(T_{2}(n)\right)$.

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- Two nodes are connected by a directed edge if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Initial

yes

Relations between Complexity Classes

Theorem 22 Suppose $f(n)$ is proper. Then

1. $\operatorname{SPACE}(f(n)) \subseteq \operatorname{NSPACE}(f(n))$, $\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n))$.
2. $\operatorname{NTIME}(f(n)) \subseteq \operatorname{SPACE}(f(n))$.
3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}\left(k^{\log n+f(n)}\right)$.

- Proof of 2 :
- Explore the computation tree of the NTM for "yes."
- Specifically, generate a $f(n)$-bit sequence denoting the nondeterministic choices over $f(n)$ steps.

Proof of Theorem 22(2)

- (continued)
- Simulate the NTM based on the choices.
- Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
- Each path simulation consumes at most $O(f(n))$ space because it takes $O(f(n))$ time.
- The total space is $O(f(n))$ because space is recycled.

Proof of Theorem 22(3)

- Let k-string NTM

$$
M=(K, \Sigma, \Delta, s)
$$

with input and output decide $L \in \operatorname{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

Proof of Theorem 22(3) (continued)

- We only care about

$$
\left(q, i, w_{2}, u_{2}, \ldots, w_{k-1}, u_{k-1}\right)
$$

where i is an integer between 0 and n for the position of the first cursor.

- The number of configurations is therefore at most

$$
\begin{equation*}
|K| \times(n+1) \times|\Sigma|^{(2 k-4) f(n)}=O\left(c_{1}^{\log n+f(n)}\right) \tag{1}
\end{equation*}
$$

for some c_{1}, which depends on M.

- Add edges to the configuration graph based on M's transition function.

Proof of Theorem 22(3) (concluded)

- $x \in L \Leftrightarrow$ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i, \ldots) [there may be many of them].
- This is REACHABILITY on a graph with $O\left(c_{1}^{\log n+f(n)}\right)$ nodes.
- It is in $\operatorname{TIME}\left(c^{\log n+f(n)}\right)$ for some c because REAChability $\in \operatorname{TIME}\left(n^{j}\right)$ for some j and

$$
\left[c_{1}^{\log n+f(n)}\right]^{j}=\left(c_{1}^{j}\right)^{\log n+f(n)}
$$

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations earlier, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce an output of length $f(n)$ first.
- The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n+f(n)}$ steps for some c (p. 196).
- So we can prevent infinite loops during simulation by pruning any path longer than $c^{\log n+f(n)}$.

The Grand Chain of Inclusions

$$
\mathrm{L} \subseteq \mathrm{NL} \subseteq \mathrm{P} \subseteq \mathrm{NP} \subseteq \mathrm{PSPACE} \subseteq \mathrm{EXP}
$$

- By Corollary 19 (p. 189), we know L \subsetneq PSPACE.
- The chain must break somewhere between L and PSPACE. ${ }^{\text {a }}$
- It is suspected that all four inclusions are proper.
- But there are no proofs yet. ${ }^{\text {b }}$

[^0]
Nondeterministic Space and Deterministic Space

- By Theorem 4 (p. 84),

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}\left(c^{f(n)}\right),
$$

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic-a polynomial-by Savitch's theorem.

Savitch's Theorem

Theorem 23 (Savitch (1970))

$$
\text { REACHABILITY } \in \operatorname{SPACE}\left(\log ^{2} n\right)
$$

- Let $G(V, E)$ be a graph with n nodes.
- For $i \geq 0$, let

$$
\operatorname{PATH}(x, y, i)
$$

mean there is a path from node x to node y of length at most 2^{i}.

- There is a path from x to y if and only if

$$
\operatorname{PATH}(x, y,\lceil\log n\rceil)
$$

holds.

The Proof (continued)

- For $i>0, \operatorname{PATH}(x, y, i)$ if and only if there exists a z such that $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$.
- For $\operatorname{PATH}(x, y, 0)$, check the input graph or if $x=y$.
- Compute $\operatorname{PATH}(x, y,\lceil\log n\rceil)$ with a depth-first search on a graph with nodes $(x, y, z, i) \mathrm{s}$ (see next page). ${ }^{\text {a }}$
- Like stacks in recursive calls, we keep only the current path of $(x, y, i) \mathrm{s}$.
- The space requirement is proportional to the depth of the tree: $\lceil\log n\rceil$.
${ }^{\text {a }}$ Contributed by Mr. Chuan-Yao Tan on October 11, 2011.

- Depth is $\lceil\log n\rceil$, and each node (x, y, z, i) needs space $O(\log n)$.
- The total space is $O\left(\log ^{2} n\right)$.

The Proof (concluded): Algorithm for $\operatorname{PATH}(x, y, i)$
1: if $i=0$ then
2: if $x=y$ or $(x, y) \in E$ then
3: return true;
4: else
5: return false;
6: end if
7: else
8: \quad for $z=1,2, \ldots, n$ do
9: \quad if $\operatorname{PATH}(x, z, i-1)$ and $\operatorname{PATH}(z, y, i-1)$ then
10: return true;
11: end if
12: end for
13: return false;
14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 24 Let $f(n) \geq \log n$ be proper. Then

$$
\operatorname{NSPACE}(f(n)) \subseteq \operatorname{SPACE}\left(f^{2}(n)\right) .
$$

- Apply Savitch's proof to the configuration graph of the NTM on the input.
- From p. 196, the configuration graph has $O\left(c^{f(n)}\right)$ nodes; hence each node takes space $O(f(n))$.
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O\left(c^{f(n)}\right)$ space!

The Proof (continued)

- The way out is not to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when $i=0$ on p. 204, by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step. ${ }^{\text {a }}$

[^1]
The Proof (concluded)

- The z variable in the algorithm on p. 204 simply runs through all possible valid configurations.
- Let $z=0,1, \ldots, O\left(c^{f(n)}\right)$.
- Make sure z is a valid configuration before using it in the recursive calls. ${ }^{\text {a }}$
- Each z has length $O(f(n))$ by Eq. (1) on p. 196.
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- $\operatorname{PSPACE}=$ NPSPACE .
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if $\mathrm{P}=\mathrm{NP}$.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 182).
- It is known that ${ }^{\text {a }}$

$$
\begin{equation*}
\operatorname{coNSPACE}(f(n))=\operatorname{NSPACE}(f(n)) \tag{2}
\end{equation*}
$$

- So

$$
\begin{aligned}
\operatorname{coNL} & =\mathrm{NL} \\
\text { coNPSPACE } & =\text { NPSPACE. }
\end{aligned}
$$

- But there are still no hints of coNP = NP.

[^2]
Reductions and Completeness

Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input $R(x)$ of A .
- The answer to x for B is the same as the answer to $R(x)$ for A .
- There must be restrictions on the complexity of computing R.
- Otherwise, $R(x)$ may solve B , defeating the purpose.
* E.g., $R(x)=$ "yes" if and only if $x \in \mathrm{~B}$!

Degrees of Difficulty (concluded)

- We say problem A is at least as hard as problem B if B reduces to A .
- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
- If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too. ${ }^{\text {a }}$
- If B is hard to solve, A must be hard (if not harder) to solve, too.
${ }^{\text {a }}$ Thanks to a lively class discussion on October 13, 2009.

Reduction

Solving problem B by calling the algorithm for problem A once and without further processing its answer.

Comments ${ }^{\text {a }}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B .
- The output $R(x)$ is an instance of A .
- $R(x)$ may not span all possible instances of A. ${ }^{\mathrm{b}}$
- Some instances of A may never appear in the range of R.

[^3]
Reduction between Languages

- Language L_{1} is reducible to L_{2} if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_{1}$ if and only if $R(x) \in L_{2}$.
- R is said to be a $(\mathbf{K a r p})$ reduction from L_{1} to L_{2}.

Reduction between Languages (concluded)

- Note that by Theorem 22 (p. 193), R runs in polynomial time.
- In most cases, a polynomial-time R suffices for proofs.
- Suppose R is a reduction from L_{1} to L_{2}.
- Then solving " $R(x) \in L_{2}$?" is an algorithm for solving " $x \in L_{1}$?" ${ }^{\text {a }}$
${ }^{\text {a But it may not be an optimal one. }}$

A Paradox?

- Degree of difficulty is not defined in terms of absolute complexity.
- So a language $\mathrm{B} \in \operatorname{TIME}\left(n^{99}\right)$ may be "easier" than a language $\mathrm{A} \in \operatorname{TIME}\left(n^{3}\right)$.
- This happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem requiring n^{99} steps be reducible to a problem solvable in n^{3} steps?

Paradox Resolved

- The so-called contradiction does not hold.
- When we solve the problem " $x \in \mathrm{~B}$?" via " $R(x) \in \mathrm{A}$?", we must consider the time spent by $R(x)$ and its length $|R(x)|$.
- If $|R(x)|=\Omega\left(n^{33}\right)$, then answering " $R(x) \in \mathrm{A}$?" takes $\Omega\left(\left(n^{33}\right)^{3}\right)=\Omega\left(n^{99}\right)$ steps, and there is no contradiction.
- Suppose, on the other hand, that $|R(x)|=o\left(n^{33}\right)$.
- Then $R(x)$ must run in time $\Omega\left(n^{99}\right)$ to make the overall time for answering " $R(x) \in \mathrm{A}$?" take $\Omega\left(n^{99}\right)$ steps.
- In either case, the contradiction disappears.

[^0]: ${ }^{\text {a }}$ Bill Gates (1996), "I keep bumping into that silly quotation attributed to me that says 640 K of memory is enough."
 ${ }^{\mathrm{b}}$ Carl Friedrich Gauss (1777-1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of."

[^1]: ${ }^{\text {a }}$ Thanks to a lively class discussion on October 15, 2003.

[^2]: ${ }^{\text {a S Selepscényi (1987) and Immerman (1988). }}$

[^3]: ${ }^{\text {a }}$ Contributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.
 ${ }^{\mathrm{b}} R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

