Complements of Nondeterministic Classes

- From p. 133, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the **complement** of L, denoted by \overline{L} , is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

• For any complexity class \mathcal{C} , $\mathrm{co}\mathcal{C}$ denotes the class

$$\{L: \bar{L} \in \mathcal{C}\}.$$

- Clearly, if C is a *deterministic* time or space *complexity* class, then C = coC.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \overline{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 79).

Comments

• As

$$\mathrm{co}\mathcal{C} = \{L : \bar{L} \in \mathcal{C}\},\$$

 $L \in \mathcal{C}$ if and only if $\overline{L} \in \operatorname{co}\mathcal{C}$.

- But it is *not* true that $L \in C$ if and only if $L \notin coC$. - coC is not defined as \overline{C} .
- For example, suppose $C = \{\{2, 4, 6, 8, 10, \ldots\}\}.$
- Then $\operatorname{co}\mathcal{C} = \{\{1, 3, 5, 7, 9, \ldots\}\}.$
- But $\overline{\mathcal{C}} = 2^{\{1,2,3,\ldots\}^*} \{\{2,4,6,8,10,\ldots\}\}.$

The Quantified Halting Problem

- Let $f(n) \ge n$ be proper.
- Define

 $H_f = \{M; x : M \text{ accepts input } x \\ \text{after at most } f(|x|) \text{ steps} \},$

where M is deterministic.

• Assume the input is binary.

$H_f \in \mathsf{TIME}(f(n)^3)$

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
 - Use the single-string simulator (p. 57), the universal TM (p. 118), and the linear speedup theorem (p. 64).
 - Our simulator accepts M; x if and only if M accepts x before the alarm clock runs out.
- From p. 63, the total running time is $O(\ell_M k_M^2 f(n)^2)$, where ℓ_M is the length to encode each symbol or state of M and k_M is M's number of strings.
- As $\ell_M k_M^2 = O(n)$, the running time is $O(f(n)^3)$, where the constant is independent of M.

$H_f \not\in \mathsf{TIME}(f(\lfloor n/2 \rfloor))$

• Suppose TM M_{H_f} decides H_f in time $f(\lfloor n/2 \rfloor)$.

• Consider machine
$$D_f(M)$$
:

if $M_{H_f}(M; M) =$ "yes" then "no" else "yes"

• D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$, where $n = |M|.^a$

^aA student pointed out on October 6, 2004, that this estimation omits the time to write down M; M.

The Proof (concluded)

• First,

$$D_f(D_f) =$$
 "yes"

$$\Rightarrow D_f; D_f \not\in H_f$$

 $\Rightarrow D_f$ does not accept D_f within time $f(|D_f|)$

$$\Rightarrow D_f(D_f) \neq$$
 "yes"

$$\Rightarrow D_f(D_f) =$$
 "no"

a contradiction

• Similarly, $D_f(D_f) =$ "no" $\Rightarrow D_f(D_f) =$ "yes."

The Time Hierarchy Theorem

Theorem 16 If $f(n) \ge n$ is proper, then

 $\text{TIME}(f(n)) \subsetneq \text{TIME}(f(2n+1)^3).$

• The quantified halting problem makes it so.

Corollary 17 $P \subsetneq EXP$.

- $\mathbf{P} \subseteq \text{TIME}(2^n)$ because $\text{poly}(n) \leq 2^n$ for n large enough.
- But by Theorem 16,

 $\text{TIME}(2^n) \subsetneq \text{TIME}((2^{2n+1})^3) \subseteq \text{TIME}(2^{n^2}) \subseteq \text{EXP}.$

• So $P \subsetneq EXP$.

The Space Hierarchy Theorem **Theorem 18 (Hennie and Stearns (1966))** If f(n) is proper, then

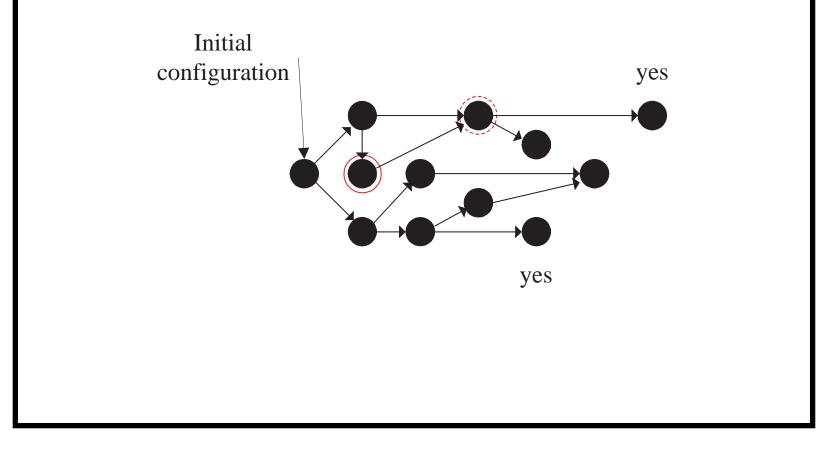
 $SPACE(f(n)) \subsetneq SPACE(f(n) \log f(n)).$

Corollary 19 $L \subsetneq PSPACE$.

Nondeterministic Time Hierarchy Theorems **Theorem 20 (Cook (1973))** If f(n) is proper, then $NTIME(n^r) \subsetneq NTIME(n^s)$

whenever $1 \leq r < s$.

Theorem 21 (Seiferas, Fischer, and Meyer (1978)) If $T_1(n), T_2(n)$ are proper, then


 $\operatorname{NTIME}(T_1(n)) \subsetneq \operatorname{NTIME}(T_2(n))$

whenever $T_1(n+1) = o(T_2(n)).$

The Reachability Method

- The computation of a time-bounded TM can be represented by a directed graph.
- The TM's configurations constitute the nodes.
- Two nodes are connected by a directed edge if one yields the other.
- The start node representing the initial configuration has zero in degree.
- When the TM is nondeterministic, a node may have an out degree greater than one.

Illustration of the Reachability Method

Theorem 22 Suppose f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. NSPACE $(f(n)) \subseteq \text{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
 - Explore the computation *tree* of the NTM for "yes."
 - Specifically, generate a f(n)-bit sequence denoting the nondeterministic choices over f(n) steps.

Proof of Theorem 22(2)

- (continued)
 - Simulate the NTM based on the choices.
 - Recycle the space and then repeat the above steps until a "yes" is encountered or the tree is exhausted.
 - Each path simulation consumes at most O(f(n))space because it takes O(f(n)) time.
 - The total space is O(f(n)) because space is recycled.

Proof of Theorem 22(3)

• Let *k*-string NTM

$$M = (K, \Sigma, \Delta, s)$$

with input and output decide $L \in \text{NSPACE}(f(n))$.

- Use the reachability method on the configuration graph of M on input x of length n.
- A configuration is a (2k+1)-tuple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

Proof of Theorem 22(3) (continued)

• We only care about

$$(q, i, w_2, u_2, \ldots, w_{k-1}, u_{k-1}),$$

where i is an integer between 0 and n for the position of the first cursor.

• The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-4)f(n)} = O(c_1^{\log n + f(n)}) \quad (1)$$

for some c_1 , which depends on M.

• Add edges to the configuration graph based on M's transition function.

Proof of Theorem 22(3) (concluded)

- x ∈ L ⇔ there is a path in the configuration graph from the initial configuration to a configuration of the form ("yes", i,...) [there may be many of them].
- This is REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes.
- It is in $\text{TIME}(c^{\log n + f(n)})$ for some c because REACHABILITY $\in \text{TIME}(n^j)$ for some j and

$$\left[c_1^{\log n + f(n)}\right]^j = (c_1^j)^{\log n + f(n)}$$

Space-Bounded Computation and Proper Functions

- In the definition of *space-bounded* computations earlier, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bounded computation must repeat a configuration if it runs for more than $c^{\log n + f(n)}$ steps for some c (p. 196).
 - So we can prevent infinite loops during simulation by pruning any path longer than $c^{\log n + f(n)}$.

The Grand Chain of Inclusions $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP.$

- By Corollary 19 (p. 189), we know $L \subsetneq PSPACE$.
- The chain must break somewhere between L and PSPACE.^a
- It is suspected that all four inclusions are proper.
- But there are no proofs yet.^b

^aBill Gates (1996), "I keep bumping into that silly quotation attributed to me that says 640K of memory is enough."

^bCarl Friedrich Gauss (1777–1855), "I could easily lay down a multitude of such propositions, which one could neither prove nor dispose of." Nondeterministic Space and Deterministic Space

• By Theorem 4 (p. 84),

```
\operatorname{NTIME}(f(n)) \subseteq \operatorname{TIME}(c^{f(n)}),
```

an exponential gap.

- There is no proof yet that the exponential gap is inherent.
- How about NSPACE vs. SPACE?
- Surprisingly, the relation is only quadratic—a polynomial—by Savitch's theorem.

```
Savitch's Theorem
```

```
Theorem 23 (Savitch (1970))
```

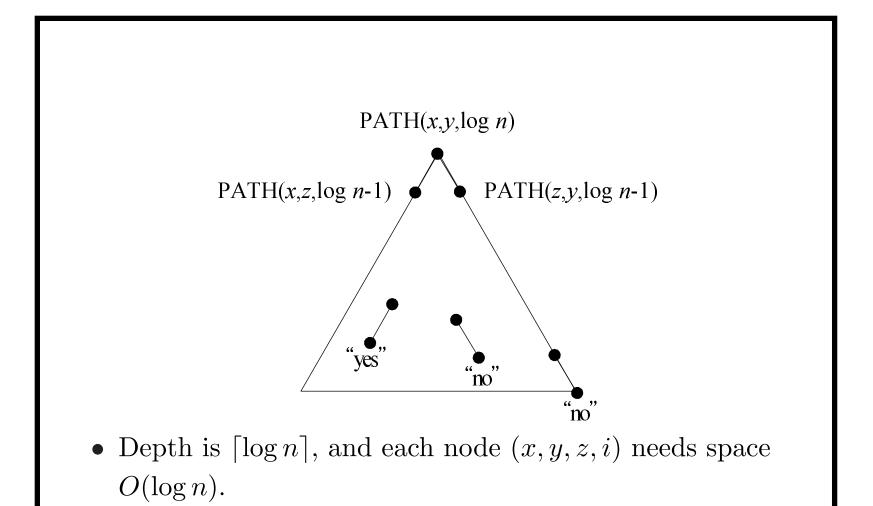
```
REACHABILITY \in SPACE(\log^2 n).
```

- Let G(V, E) be a graph with n nodes.
- For $i \ge 0$, let

```
PATH(x, y, i)
```

mean there is a path from node x to node y of length at most 2^i .

• There is a path from x to y if and only if


```
PATH(x, y, \lceil \log n \rceil)
```

holds.

The Proof (continued)

- For i > 0, PATH(x, y, i) if and only if there exists a z such that PATH(x, z, i 1) and PATH(z, y, i 1).
- For PATH(x, y, 0), check the input graph or if x = y.
- Compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first search on a graph with nodes (x, y, z, i)s (see next page).^a
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree: $\lceil \log n \rceil$.

^aContributed by Mr. Chuan-Yao Tan on October 11, 2011.

• The total space is $O(\log^2 n)$.

The Proof (concluded): Algorithm for PATH(x, y, i)1: **if** i = 0 **then** if x = y or $(x, y) \in E$ then 2: return true; 3: else 4: 5: return false; end if 6: 7: else for z = 1, 2, ..., n do 8: if PATH(x, z, i-1) and PATH(z, y, i-1) then 9: return true; 10: end if 11: end for 12:return false; 13:14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 24 Let $f(n) \ge \log n$ be proper. Then

 $NSPACE(f(n)) \subseteq SPACE(f^2(n)).$

- Apply Savitch's proof to the configuration graph of the NTM on the input.
- From p. 196, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).
- But if we construct explicitly the whole graph before applying Savitch's theorem, we get $O(c^{f(n)})$ space!

The Proof (continued)

- The way out is *not* to generate the graph at all.
- Instead, keep the graph implicit.
- We check for connectedness only when i = 0 on p. 204, by examining the input string G.
- There, given configurations x and y, we go over the Turing machine's program to determine if there is an instruction that can turn x into y in one step.^a

^aThanks to a lively class discussion on October 15, 2003.

The Proof (concluded)

- The z variable in the algorithm on p. 204 simply runs through all possible valid configurations.
 - Let $z = 0, 1, \dots, O(c^{f(n)})$.
 - Make sure z is a valid configuration before using it in the recursive calls.^a
- Each z has length O(f(n)) by Eq. (1) on p. 196.

^aThanks to a lively class discussion on October 13, 2004.

Implications of Savitch's Theorem

- PSPACE = NPSPACE.
- Nondeterminism is less powerful with respect to space.
- Nondeterminism may be very powerful with respect to time as it is not known if P = NP.

Nondeterministic Space Is Closed under Complement

- Closure under complement is trivially true for deterministic complexity classes (p. 182).
- It is known that^a

$$coNSPACE(f(n)) = NSPACE(f(n)).$$
 (2)

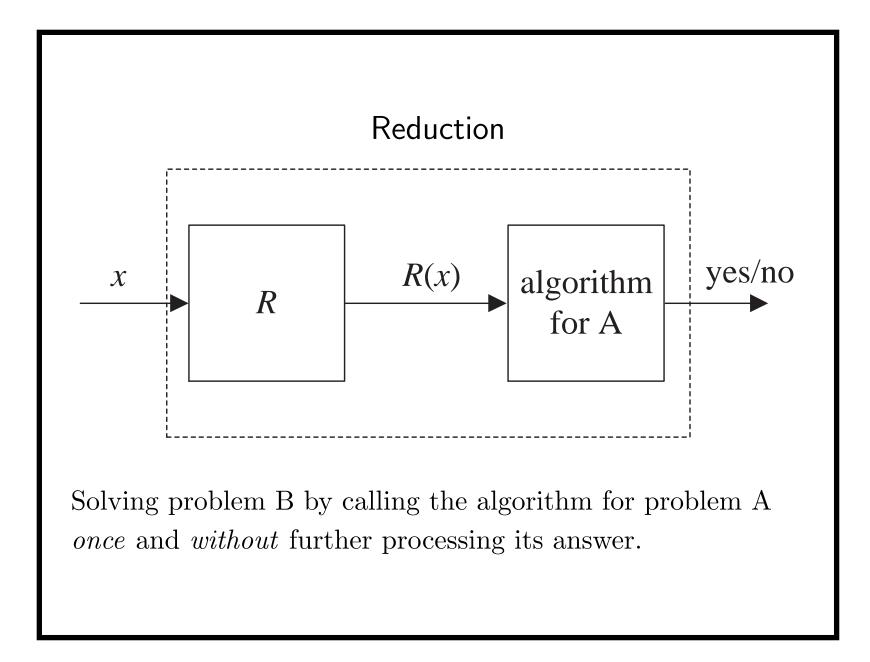
$$coNL = NL,$$

 $coNPSPACE = NPSPACE.$

• But there are still no hints of coNP = NP.

^aSzelepscényi (1987) and Immerman (1988).

Reductions and Completeness


Degrees of Difficulty

- When is a problem more difficult than another?
- B reduces to A if there is a transformation R which for every input x of B yields an equivalent input R(x) of A.
 - The answer to x for B is the same as the answer to R(x) for A.
 - There must be restrictions on the complexity of computing R.
 - Otherwise, R(x) may solve B, defeating the purpose.
 ∗ E.g., R(x) = "yes" if and only if $x \in B!$

Degrees of Difficulty (concluded)

- We say problem A is at least as hard as problem B if B reduces to A.
- This makes intuitive sense: If A is able to solve your problem B after only a little bit of work of R, then A must be at least as hard.
 - If A is easy to solve, it combined with R (which is also easy) would make B easy to solve, too.^a
 - If B is hard to solve, A must be hard (if not harder) to solve, too.

^aThanks to a lively class discussion on October 13, 2009.

$\mathsf{Comments}^{\mathrm{a}}$

- Suppose B reduces to A via a transformation R.
- The input x is an instance of B.
- The output R(x) is an instance of A.
- R(x) may not span all possible instances of A.^b

- Some instances of A may never appear in the range of R.

^aContributed by Mr. Ming-Feng Tsai (D92922003) on October 29, 2003.

 ${}^{b}R(x)$ may not be onto; Mr. Alexandr Simak (D98922040) on October 13, 2009.

Reduction between Languages

- Language L_1 is **reducible to** L_2 if there is a function R computable by a deterministic TM in space $O(\log n)$.
- Furthermore, for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.
- R is said to be a (**Karp**) reduction from L_1 to L_2 .

Reduction between Languages (concluded)

• Note that by Theorem 22 (p. 193), *R* runs in polynomial time.

- In most cases, a polynomial-time R suffices for proofs.

- Suppose R is a reduction from L_1 to L_2 .
- Then solving " $R(x) \in L_2$?" is an algorithm for solving " $x \in L_1$?"^a

^aBut it may not be an optimal one.

A Paradox?

- Degree of difficulty is not defined in terms of *absolute* complexity.
- So a language $B \in TIME(n^{99})$ may be "easier" than a language $A \in TIME(n^3)$.
 - This happens when B is reducible to A.
- But isn't this a contradiction if the best algorithm for B requires n^{99} steps?
- That is, how can a problem *requiring* n^{99} steps be reducible to a problem solvable in n^3 steps?

Paradox Resolved

- The so-called contradiction does not hold.
- When we solve the problem "x ∈ B?" via "R(x) ∈ A?", we must consider the time spent by R(x) and its length | R(x) |.
- If $|R(x)| = \Omega(n^{33})$, then answering " $R(x) \in A$?" takes $\Omega((n^{33})^3) = \Omega(n^{99})$ steps, and there is no contradiction.
- Suppose, on the other hand, that $|R(x)| = o(n^{33})$.
- Then R(x) must run in time $\Omega(n^{99})$ to make the overall time for answering " $R(x) \in A$?" take $\Omega(n^{99})$ steps.
- In either case, the contradiction disappears.