
Acceptability and Recursively Enumerable Languages

• Let L ⊆ (Σ− {⊔})∗ be a language.

• Let M be a TM such that for any string x:

– If x ∈ L, then M(x) = “yes.”

– If x 6∈ L, then M(x) =↗.a

• We say M accepts L.
aThis part is different from recursive languages.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 36

Acceptability and Recursively Enumerable Languages
(concluded)

• If L is accepted by some TM, then L is called a
recursively enumerable language.a

– A recursively enumerable language can be generated
by a TM, thus the name.b

– That is, there is an algorithm such that for every
x ∈ L, it will be printed out eventually.

– This algorithm may not terminate.
aPost (1944).
bThanks to a lively class discussion on September 20, 2011.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 37

Emil Post (1897–1954)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 38

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively
enumerable.

• Let TM M decide L.

• Need to design a TM that accepts L.

• We will modify M to obtain an M ′ that accepts L.

• M ′ is identical to M except that when M is about to
halt with a “no” state, M ′ goes into an infinite loop.

• M ′ accepts L.

– If x ∈ L, then M ′(x) = M(x) = “yes.”

– If x 6∈ L, then M(x) = “no” and so M ′(x) =↗.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 39

Recursively Enumerable Languages: Examples

• The set of C program-input pairs that do not run into
an infinite loop is recursively enumerable.

– Just run it in a simulator environment.

• The set of C programs that contain an infinite loop is
not recursively enumerable (see p. 120).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 40

Turing-Computable Functions

• Let f : (Σ− {⊔})∗ → Σ∗.

– Optimization problems, root finding problems, etc.

• Let M be a TM with alphabet Σ.

• M computes f if for any string x ∈ (Σ− {⊔})∗,
M(x) = f(x).

• We call f a recursive functiona if such an M exists.
aKurt Gödel (1931).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 41

Kurt Gödel (1906–1978)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 42

Church’s Thesis or the Church-Turing Thesis

• What is computable is Turing-computable; TMs are
algorithms.a

• Many other computation models have been proposed.

– Recursive function (Gödel), λ calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,
two-dimensional strings, and so on), etc.

• All have been proved to be equivalent.
aKleene (1953).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 43

Church’s Thesis or the Church-Turing Thesis
(concluded)

• No “intuitively computable” problems have been shown
not to be Turing-computable, yet.

• The thesis isa

a profound claim about the physical laws of our
universe, i.e.: any physical system that purports
to be a computer is not capable of any
computational task that a Turing machine is
incapable of.

aWarren Smith (1998).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 44

Alonso Church (1903–1995)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 45

Stephen Kleene (1909–1994)

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 46

Extended Church’s Thesisa

• All “reasonably succinct encodings” of problems are
polynomially related (e.g., n2 vs. n6).

– Representations of a graph as an adjacency matrix
and as a linked list are both succinct.

– The unary representation of numbers is not succinct.

– The binary representation of numbers is succinct.
∗ 1001 vs. 111111111.

• All numbers for TMs will be binary from now on.
aSome call it “polynomial Church’s thesis,” which Lószló Lovász at-

tributed to Leonid Levin.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 47

Turing Machines with Multiple Strings

• A k-string Turing machine (TM) is a quadruple
M = (K, Σ, δ, s).

• K, Σ, s are as before.

• δ : K ×Σk → (K ∪{h, “yes”, “no”})× (Σ×{←,→,−})k.

• All strings start with a ¤.

• The first string contains the input.

• Decidability and acceptability are the same as before.

• When TMs compute functions, the output is on the last
(kth) string.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 48

A 2-String TM

δ

#1000110000111001110001110���

#111110000�������������������

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 49

palindrome Revisited

• A 2-string TM can decide palindrome in O(n) steps.

– It copies the input to the second string.

– The cursor of the first string is positioned at the first
symbol of the input.

– The cursor of the second string is positioned at the
last symbol of the input.

– The two cursors are then moved in opposite
directions until the ends are reached.

– The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 50

δ

#ababbaabbaabbaabbaba���

#ababbaabbaabbaabbaba���

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 51

Configurations and Yielding

• The concept of configuration and yielding is the same as
before except that a configuration is a (2k + 1)-tuple

(q, w1, u1, w2, u2, . . . , wk, uk).

– wiui is the ith string.

– The ith cursor is reading the last symbol of wi.

– Recall that ¤ is each wi’s first symbol.

• The k-string TM’s initial configuration is

(s,
2k︷ ︸︸ ︷

¤, x︸︷︷︸
1

, ¤, ε︸︷︷︸
2

, ¤, ε︸︷︷︸
3

, . . . , ¤, ε︸︷︷︸
k

).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 52

Time Complexity

• The multistring TM is the basis of our notion of the
time expended by TMs.

• If a k-string TM M halts after t steps on input x, then
the time required by M on input x is t.

• If M(x) =↗, then the time required by M on x is ∞.

• Machine M operates within time f(n) for f : N→ N
if for any input string x, the time required by M on x is
at most f(|x |).
– |x | is the length of string x.

• Function f(n) is a time bound for M .

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 53

Time Complexity Classesa

• Suppose language L ⊆ (Σ− {⊔})∗ is decided by a
multistring TM operating in time f(n).

• We say L ∈ TIME(f(n)).

• TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

• TIME(f(n)) is a complexity class.

– palindrome is in TIME(f(n)), where f(n) = O(n).

aHartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns

(1965).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 54

Juris Hartmanisa (1928–)

aTuring Award (1993).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 55

Richard Edwin Stearnsa (1936–)

aTuring Award (1993).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 56

The Simulation Technique

Theorem 2 Given any k-string M operating within time
f(n), there exists a (single-string) M ′ operating within time
O(f(n)2) such that M(x) = M ′(x) for any input x.

• The single string of M ′ implements the k strings of M .

• Represent configuration (q, w1, u1, w2, u2, . . . , wk, uk) of
M by this string of M ′:

(q, ¤w′1u1 ¢ w′2u2 ¢ · · ·¢ w′kuk ¢ ¢).

– ¢ is a special delimiter.

– w′i is wi with the firsta and last symbols “primed.”

– It serves the purpose of “,” before.
aThe first symbol is always ¤.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 57

The Proof (continued)

• The “priming” of the last symbol of wi ensures that M ′

knows which symbol is under each cursor of M .a

• We use the primed version of the first symbol of wi (so
¤ becomes ¤′).

– TM cursors are not allowed to move to the left of ¤

(p. 20).

– Now the cursor of M ′ can move between the
simulated strings of M .b

aAdded because of comments made by Mr. Che-Wei Chang

(R95922093) on September 27, 2006.
bThanks to a lively discussion on September 22, 2009.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 58

The Proof (continued)

• The initial configuration of M ′ is

(s, ¤ ¤′′ x ¢

k − 1 pairs︷ ︸︸ ︷
¤′′ ¢ · · ·¤′′ ¢¢).

– ¤ is double-primed because it is the beginning and
the ending symbol here.a

aAdded after the class discussion on September 20, 2011.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 59

The Proof (continued)

• We simulate each move of M thus:

1. M ′ scans the string to pick up the k symbols under
the cursors.
– The states of M ′ must be enlarged to include

K × Σk to remember them.
– The transition functions of M ′ must also reflect it.

2. M ′ then changes the string to reflect the overwriting
of symbols and cursor movements of M .

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 60

The Proof (continued)

• It is possible that some strings of M need to be
lengthened (see next page).

– The linear-time algorithm on p. 31 can be used for
each such string.

• The simulation continues until M halts.

• M ′ then erases all strings of M except the last one.

• Since M halts within time f(|x |), none of its strings
ever becomes longer than f(|x |).a

• The length of the string of M ′ at any time is O(kf(|x |)).
aWe tacitly assume f(n) ≥ n.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 61

string 1 string 2 string 3 string 4

string 1 string 2 string 3 string 4

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 62

The Proof (concluded)

• Simulating each step of M takes, per string of M ,
O(kf(|x |)) steps.

– O(f(|x |)) steps to collect information from this
string.

– O(kf(|x |)) steps to write and, if needed, to lengthen
the string.

• M ′ takes O(k2f(|x |)) steps to simulate each step of M

because there are k strings.

• As there are f(|x |) steps of M to simulate, M ′ operates
within time O(k2f(|x |)2).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 63

Linear Speedupa

Theorem 3 Let L ∈ TIME(f(n)). Then for any ε > 0,
L ∈ TIME(f ′(n)), where f ′(n) = εf(n) + n + 2.

aHartmanis and Stearns (1965).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 64

Implications of the Speedup Theorem

• State size can be traded for speed.a

• If f(n) = cn with c > 1, then c can be made arbitrarily
close to 1.

• If f(n) is superlinear, say f(n) = 14n2 + 31n, then the
constant in the leading term (14 in this example) can be
made arbitrarily small.

– Arbitrary linear speedup can be achieved.b

– This justifies the big-O notation for the analysis of
algorithms.

amk · |Σ|3mk-fold increase to gain a speedup of O(m). No free lunch.
bCan you apply the theorem multiple times to achieve superlinear

speedup? Thanks to a question by a student on September 21, 2010.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 65

P

• By the linear speedup theorem, any polynomial time
bound can be represented by its leading term nk for
some k ≥ 1.

• If L is a polynomially decidable language, it is in
TIME(nk) for some k ∈ N.

– Clearly, TIME(nk) ⊆ TIME(nk+1).

• The union of all polynomially decidable languages is
denoted by P:

P =
⋃

k>0

TIME(nk).

• P contains problems that can be efficiently solved.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 66

Space Complexity

• Consider a k-string TM M with input x.

• Assume non-
⊔

is never written over by
⊔

.a

– The purpose is not to artificially reduce the space
needs (see below).

• If M halts in configuration
(H, w1, u1, w2, u2, . . . , wk, uk), then the space required
by M on input x is

k∑

i=1

|wiui|.

aCorrected by Ms. Chuan-Ju Wang (R95922018) on September 27,

2006.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 67

Space Complexity (continued)

• Suppose we do not charge the space used only for input
and output.

• Let k > 2 be an integer.

• A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.

– The input string is read-only.

– The last string, the output string, is write-only.

– So the cursor never moves to the left.

– The cursor of the input string does not wander off
into the

⊔
s.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 68

Space Complexity (concluded)

• If M is a TM with input and output, then the space
required by M on input x is

k−1∑

i=2

|wiui|.

• Machine M operates within space bound f(n) for
f : N→ N if for any input x, the space required by M

on x is at most f(|x |).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 69

Space Complexity Classes

• Let L be a language.

• Then
L ∈ SPACE(f(n))

if there is a TM with input and output that decides L

and operates within space bound f(n).

• SPACE(f(n)) is a set of languages.

– palindrome ∈ SPACE(log n).a

• As in the linear speedup theorem (Theorem 3), constant
coefficients do not matter.

aKeep 3 counters.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 70

Nondeterminisma

• A nondeterministic Turing machine (NTM) is a
quadruple N = (K, Σ,∆, s).

• K, Σ, s are as before.

• ∆ ⊆ K × Σ× (K ∪ {h, “yes”, “no”})× Σ× {←,→,−} is
a relation, not a function.b

– For each state-symbol combination, there may be
multiple valid next steps—or none at all.

– Multiple lines of code may be applicable.
aRabin and Scott (1959).
bCorrected by Mr. Jung-Ying Chen (D95723006) on September 23,

2008.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 71

Nondeterminism (concluded)

• As before, a program contains lines of code:

(q1, σ1, p1, ρ1, D1) ∈ ∆,

(q2, σ2, p2, ρ2, D2) ∈ ∆,

...

(qn, σn, pn, ρn, Dn) ∈ ∆.

– In the deterministic case (p. 21), we wrote

δ(qi, σi) = (pi, ρi, Di).

• A configuration yields another configuration in one step
if there exists a rule in ∆ that makes this happen.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 72

Michael O. Rabina (1931–)

aTuring Award (1976).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 73

Dana Stewart Scotta (1932–)

aTuring Award (1976).

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 74

Computation Tree and Computation Path

Ø\HVÙ

V

ØQRÙ
Ø\HVÙ

K

K

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 75

Decidability under Nondeterminism

• Let L be a language and N be an NTM.

• N decides L if for any x ∈ Σ∗, x ∈ L if and only if there
is a sequence of valid configurations that ends in “yes.”

– It is not required that the NTM halts in all
computation paths.a

– If x 6∈ L, no nondeterministic choices should lead to a
“yes” state.

• The key is the algorithm’s overall behavior not whether
it gives a correct answer for each particular run.

• Determinism is a special case of nondeterminism.
aSo “accepts” is a more proper term, and other books use “decides”

only when the NTM always halts.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 76

An Example

• Let L be the set of logical conclusions of a set of axioms.

– Predicates not in L may be false under the axioms.

– They may also be independent of the axioms.
∗ That is, they can be assumed true or false without

contradicting the axioms.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 77

An Example (concluded)

• Let φ be a predicate whose validity we would like to
prove.

• Consider the nondeterministic algorithm:

1: b := true;
2: while the input predicate φ 6= b do
3: Generate a logical conclusion of b by applying one

of the axioms; {Nondeterministic choice.}
4: Assign this conclusion to b;
5: end while
6: “yes”;

• This algorithm decides L.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 78

Complementing a TM’s Halting States

• Let M decide L, and M ′ be M after “yes” ↔ “no”.

• If M is a deterministic TM, then M ′ decides L̄.

• But if M is an NTM, then M ′ may not decide L̄.

– It is possible that both M and M ′ accept x (see next
page).

– So M and M ′ accept languages that are not
complements of each other.

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 79

Ø\HVÙ

[

ØQRÙ
Ø\HVÙ

K

K

ØQRÙ

[

Ø\HVÙ
ØQRÙ

K

K

c©2011 Prof. Yuh-Dauh Lyuu, National Taiwan University Page 80

