Acceptability and Recursively Enumerable Languages

- Let $L \subseteq(\Sigma-\{\sqcup\})^{*}$ be a language.
- Let M be a TM such that for any string x :
- If $x \in L$, then $M(x)=$ "yes."
- If $x \notin L$, then $M(x)=\nearrow^{\text {a }}{ }^{\text {a }}$
- We say M accepts L.

[^0]
Acceptability and Recursively Enumerable Languages (concluded)

- If L is accepted by some $T M$, then L is called a recursively enumerable language. ${ }^{\text {a }}$
- A recursively enumerable language can be generated by a TM, thus the name. ${ }^{\text {b }}$
- That is, there is an algorithm such that for every $x \in L$, it will be printed out eventually.
- This algorithm may not terminate.

[^1]

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- Need to design a TM that accepts L.
- We will modify M to obtain an M^{\prime} that accepts L.
- M^{\prime} is identical to M except that when M is about to halt with a "no" state, M^{\prime} goes into an infinite loop.
- M^{\prime} accepts L.
- If $x \in L$, then $M^{\prime}(x)=M(x)=$ "yes."
- If $x \notin L$, then $M(x)=$ "no" and so $M^{\prime}(x)=\nearrow$.

Recursively Enumerable Languages: Examples

- The set of C program-input pairs that do not run into an infinite loop is recursively enumerable.
- Just run it in a simulator environment.
- The set of C programs that contain an infinite loop is not recursively enumerable (see p. 120).

Turing-Computable Functions

- Let $f:(\Sigma-\{\bigsqcup\})^{*} \rightarrow \Sigma^{*}$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ.
- M computes f if for any string $x \in(\Sigma-\{\bigsqcup\})^{*}$, $M(x)=f(x)$.
- We call f a recursive function ${ }^{\text {a }}$ if such an M exists.

[^2]
Kurt Gödel (1906-1978)

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms. ${ }^{\text {a }}$
- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson \& Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.

[^3]
Church's Thesis or the Church-Turing Thesis (concluded)

- No "intuitively computable" problems have been shown not to be Turing-computable, yet.
- The thesis is ${ }^{\text {a }}$
a profound claim about the physical laws of our universe, i.e.: any physical system that purports to be a computer is not capable of any
computational task that a Turing machine is incapable of.

[^4]

Stephen Kleene (1909-1994)

Extended Church's Thesis ${ }^{\text {a }}$

- All "reasonably succinct encodings" of problems are polynomially related (e.g., n^{2} vs. n^{6}).
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct. * 1001 vs. 111111111.
- All numbers for TMs will be binary from now on.
aSome call it "polynomial Church's thesis," which Lószló Lovász attributed to Leonid Levin.

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^{k} \rightarrow(K \cup\{h$, "yes", "no" $\}) \times(\Sigma \times\{\leftarrow, \rightarrow,-\})^{k}$.
- All strings start with a \triangleright.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (k th) string.

Palindrome Revisited

- A 2 -string TM can decide palindrome in $O(n)$ steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The two cursors are then moved in opposite directions until the ends are reached.
- The machine accepts if and only if the symbols under the two cursors are identical at all steps.

Configurations and Yielding

- The concept of configuration and yielding is the same as before except that a configuration is a $(2 k+1)$-tuple

$$
\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)
$$

$-w_{i} u_{i}$ is the i th string.

- The i th cursor is reading the last symbol of w_{i}.
- Recall that \triangleright is each w_{i} 's first symbol.
- The k-string TM's initial configuration is

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TMs.
- If a k-string TM M halts after t steps on input x, then the time required by M on input x is t.
- If $M(x)=\nearrow$, then the time required by M on x is ∞.
- Machine M operates within time $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input string x, the time required by M on x is at most $f(|x|)$.
$-|x|$ is the length of string x.
- Function $f(n)$ is a time bound for M.

Time Complexity Classes ${ }^{\text {a }}$

- Suppose language $L \subseteq(\Sigma-\{\bigsqcup\})^{*}$ is decided by a multistring TM operating in time $f(n)$.
- We say $L \in \operatorname{TIME}(f(n))$.
- $\operatorname{TIME}(f(n))$ is the set of languages decided by TMs with multiple strings operating within time bound $f(n)$.
- $\operatorname{TIME}(f(n))$ is a complexity class.
- Palindrome is in $\operatorname{TIME}(f(n))$, where $f(n)=O(n)$.

[^5]

Richard Edwin Stearns ${ }^{\text {a }}$ (1936-)

${ }^{\text {a }}$ Turing Award (1993).

The Simulation Technique

Theorem 2 Given any k-string M operating within time $f(n)$, there exists a (single-string) M^{\prime} operating within time $O\left(f(n)^{2}\right)$ such that $M(x)=M^{\prime}(x)$ for any input x.

- The single string of M^{\prime} implements the k strings of M.
- Represent configuration $\left(q, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}\right)$ of M by this string of M^{\prime} :

$$
\left(q, \triangleright w_{1}^{\prime} u_{1} \triangleleft w_{2}^{\prime} u_{2} \triangleleft \cdots \triangleleft w_{k}^{\prime} u_{k} \triangleleft \triangleleft\right) .
$$

$-\triangleleft$ is a special delimiter.
$-w_{i}^{\prime}$ is w_{i} with the first ${ }^{\text {a }}$ and last symbols "primed."

- It serves the purpose of "," before.

[^6]
The Proof (continued)

- The "priming" of the last symbol of w_{i} ensures that M^{\prime} knows which symbol is under each cursor of M. ${ }^{\text {a }}$
- We use the primed version of the first symbol of w_{i} (so \triangleright becomes \triangleright^{\prime}).
- TM cursors are not allowed to move to the left of \triangleright (p. 20).
- Now the cursor of M^{\prime} can move between the simulated strings of $M .{ }^{\text {b }}$

[^7]
The Proof (continued)

- The initial configuration of M^{\prime} is

$$
(s, \triangleright \triangleright^{\prime \prime} x \triangleleft \overbrace{\left.\triangleright^{\prime \prime} \triangleleft \cdots \triangleright^{\prime \prime} \triangleleft \triangleleft\right)}^{k-1 \text { pairs }} .
$$

$-\triangleright$ is double-primed because it is the beginning and the ending symbol here. ${ }^{\text {a }}$

[^8]
The Proof (continued)

- We simulate each move of M thus:

1. M^{\prime} scans the string to pick up the k symbols under the cursors.

- The states of M^{\prime} must be enlarged to include $K \times \Sigma^{k}$ to remember them.
- The transition functions of M^{\prime} must also reflect it.

2. M^{\prime} then changes the string to reflect the overwriting of symbols and cursor movements of M.

The Proof (continued)

- It is possible that some strings of M need to be lengthened (see next page).
- The linear-time algorithm on p. 31 can be used for each such string.
- The simulation continues until M halts.
- M^{\prime} then erases all strings of M except the last one.
- Since M halts within time $f(|x|)$, none of its strings ever becomes longer than $f(|x|) .{ }^{\text {a }}$
- The length of the string of M^{\prime} at any time is $O(k f(|x|))$.

[^9]

The Proof (concluded)

- Simulating each step of M takes, per string of M, $O(k f(|x|))$ steps.
- $O(f(|x|))$ steps to collect information from this string.
- $O(k f(|x|))$ steps to write and, if needed, to lengthen the string.
- M^{\prime} takes $O\left(k^{2} f(|x|)\right)$ steps to simulate each step of M because there are k strings.
- As there are $f(|x|)$ steps of M to simulate, M^{\prime} operates within time $O\left(k^{2} f(|x|)^{2}\right)$.

Linear Speedup ${ }^{\text {a }}$

Theorem 3 Let $L \in \operatorname{TIME}(f(n))$. Then for any $\epsilon>0$, $L \in \operatorname{TIME}\left(f^{\prime}(n)\right)$, where $f^{\prime}(n)=\epsilon f(n)+n+2$.
${ }^{\text {a }}$ Hartmanis and Stearns (1965).

Implications of the Speedup Theorem

- State size can be traded for speed. ${ }^{\text {a }}$
- If $f(n)=c n$ with $c>1$, then c can be made arbitrarily close to 1 .
- If $f(n)$ is superlinear, say $f(n)=14 n^{2}+31 n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
- Arbitrary linear speedup can be achieved. ${ }^{\text {b }}$
- This justifies the big-O notation for the analysis of algorithms.

[^10]
P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^{k} for some $k \geq 1$.
- If L is a polynomially decidable language, it is in $\operatorname{TIME}\left(n^{k}\right)$ for some $k \in \mathbb{N}$.
- Clearly, $\operatorname{TIME}\left(n^{k}\right) \subseteq \operatorname{TIME}\left(n^{k+1}\right)$.
- The union of all polynomially decidable languages is denoted by P:

$$
\mathrm{P}=\bigcup_{k>0} \operatorname{TIME}\left(n^{k}\right)
$$

- P contains problems that can be efficiently solved.

Space Complexity

- Consider a k-string TM M with input x.
- Assume non- $ل$ is never written over by $\bigsqcup^{\text {a }}{ }^{\text {a }}$
- The purpose is not to artificially reduce the space needs (see below).
- If M halts in configuration ($H, w_{1}, u_{1}, w_{2}, u_{2}, \ldots, w_{k}, u_{k}$), then the space required by M on input x is

$$
\sum_{i=1}^{k}\left|w_{i} u_{i}\right|
$$

${ }^{\text {a }}$ Corrected by Ms. Chuan-Ju Wang (R95922018) on September 27, 2006.

Space Complexity (continued)

- Suppose we do not charge the space used only for input and output.
- Let $k>2$ be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
- The input string is read-only.
- The last string, the output string, is write-only.
- So the cursor never moves to the left.
- The cursor of the input string does not wander off into the $\bigsqcup \mathrm{s}$.

Space Complexity (concluded)

- If M is a TM with input and output, then the space required by M on input x is

$$
\sum_{i=2}^{k-1}\left|w_{i} u_{i}\right|
$$

- Machine M operates within space bound $f(n)$ for $f: \mathbb{N} \rightarrow \mathbb{N}$ if for any input x, the space required by M on x is at most $f(|x|)$.

Space Complexity Classes

- Let L be a language.
- Then

$$
L \in \operatorname{SPACE}(f(n))
$$

if there is a TM with input and output that decides L and operates within space bound $f(n)$.

- $\operatorname{SPACE}(f(n))$ is a set of languages.
- Palindrome $\in \operatorname{SPACE}(\log n) .{ }^{\text {a }}$
- As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.

[^11]
Nondeterminism ${ }^{\text {a }}$

- A nondeterministic Turing machine (NTM) is a quadruple $N=(K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \times(K \cup\{h$, "yes", "no" $\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ is a relation, not a function. ${ }^{\text {b }}$
- For each state-symbol combination, there may be multiple valid next steps-or none at all.
- Multiple lines of code may be applicable.

[^12]
Nondeterminism (concluded)

- As before, a program contains lines of code:

$$
\begin{aligned}
\left(q_{1}, \sigma_{1}, p_{1}, \rho_{1}, D_{1}\right) & \in \Delta \\
\left(q_{2}, \sigma_{2}, p_{2}, \rho_{2}, D_{2}\right) & \in \Delta, \\
\vdots & \\
\left(q_{n}, \sigma_{n}, p_{n}, \rho_{n}, D_{n}\right) & \in \Delta .
\end{aligned}
$$

- In the deterministic case (p. 21), we wrote

$$
\delta\left(q_{i}, \sigma_{i}\right)=\left(p_{i}, \rho_{i}, D_{i}\right)
$$

- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

Michael O. Rabin ${ }^{\text {a }}$ (1931-)

${ }^{\text {a }}$ Turing Award (1976).

Dana Stewart Scott ${ }^{\text {a }}$ (1932-)

${ }^{\text {a }}$ Turing Award (1976).

Computation Tree and Computation Path

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^{*}, x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- It is not required that the NTM halts in all computation paths. ${ }^{\text {a }}$
- If $x \notin L$, no nondeterministic choices should lead to a "yes" state.
- The key is the algorithm's overall behavior not whether it gives a correct answer for each particular run.
- Determinism is a special case of nondeterminism.
aSo "accepts" is a more proper term, and other books use "decides" only when the NTM always halts.

An Example

- Let L be the set of logical conclusions of a set of axioms.
- Predicates not in L may be false under the axioms.
- They may also be independent of the axioms.
* That is, they can be assumed true or false without contradicting the axioms.

An Example (concluded)

- Let ϕ be a predicate whose validity we would like to prove.
- Consider the nondeterministic algorithm:

1: $b:=$ true;
2: while the input predicate $\phi \neq b$ do
3: Generate a logical conclusion of b by applying one of the axioms; \{Nondeterministic choice.\}
4: Assign this conclusion to b;
5: end while
6: "yes";

- This algorithm decides L.

Complementing a TM's Halting States

- Let M decide L, and M^{\prime} be M after "yes" \leftrightarrow "no".
- If M is a deterministic TM, then M^{\prime} decides \bar{L}.
- But if M is an NTM, then M^{\prime} may not decide \bar{L}.
- It is possible that both M and M^{\prime} accept x (see next page).
- So M and M^{\prime} accept languages that are not complements of each other.

[^0]: ${ }^{\text {a }}$ This part is different from recursive languages.

[^1]: ${ }^{\text {a Post (1944). }}$
 ${ }^{\mathrm{b}}$ Thanks to a lively class discussion on September 20, 2011.

[^2]: ${ }^{\text {a }}$ Kurt Gödel (1931).

[^3]: ${ }^{a}$ Kleene (1953).

[^4]: ${ }^{a}$ Warren Smith (1998).

[^5]: ${ }^{\text {a }}$ Hartmanis and Stearns (1965); Hartmanis, Lewis, and Stearns (1965).

[^6]: ${ }^{\text {a }}$ The first symbol is always \triangleright.

[^7]: ${ }^{\text {a }}$ Added because of comments made by Mr. Che-Wei Chang (R95922093) on September 27, 2006.
 ${ }^{\mathrm{b}}$ Thanks to a lively discussion on September 22, 2009.

[^8]: ${ }^{\text {a }}$ Added after the class discussion on September 20, 2011.

[^9]: ${ }^{\text {a }}$ We tacitly assume $f(n) \geq n$.

[^10]: ${ }^{\mathrm{a}} m^{k} \cdot|\Sigma|^{3 m k}$-fold increase to gain a speedup of $O(m)$. No free lunch.
 ${ }^{\mathrm{b}}$ Can you apply the theorem multiple times to achieve superlinear speedup? Thanks to a question by a student on September 21, 2010.

[^11]: ${ }^{\text {a }}$ Keep 3 counters.

[^12]: ${ }^{\text {a }}$ Rabin and Scott (1959).
 ${ }^{\mathrm{b}}$ Corrected by Mr. Jung-Ying Chen (D95723006) on September 23, 2008.

